TEGL Windows Toolkit II
Release 1.10

Programmer's Reference Guide
for TURBO PASCAL 5.0/5.5
and QUICK PASCAL 1.0

Copyright (C) 1990, TEGL Systems Corporation
All rights reserved

TEGL Systems Corporation

Suite 780, 789 West Pender Street
Vancouver, British Columbia
Canada V6C 1H2

TEGL Windows Toolkit II
LICENSE AGREEMENT

TEGL software products are protected under both Canada copyright
law and international treaty provisions.

You have the non-exclusive right to use the enclosed software under the
following terms and conditions.

You may use this software on a single machine, for both personal and
business use; and may make copies of the software solely for backup
purposes. Other than this you agree to use this software "like a book",
meaning the software may be used by any number of people and may be moved
from one computer to another so long as there is no possibility of it being
used by more than one person at one time.

Programs that you write and compile using the TEGL Windows Toolkit may be
used, given away, or sold without additional license or fees as long as
all copies of such programs bear a copyright notice. By "copyright notice"
we mean either your own copyright notice or if you prefer, the following
statement, "Created using TEGL Windows Toolkit, copyright (C) 1989, 1990,
TEGL Systems Corporation. All rights reserved".

Included on the TEGL Windows Toolkit diskettes are a number of support
files that contain encoded hardware and font information used by the
standard graphic unit. These files are proprietary to TEGL. You may use
these files with the programs you create with the TEGL Windows Toolkit for
your own personal or business use. To the extent the programs you write
and compile using the TEGL Windows Toolkit make use of these support files,
you may distribute in combination with such programs, provided you do not
use, give away, or sell these support files separately, and all copies of
your programs bear a copyright notice.

The Complete Games Toolkit diskettes provide a demonstration on how to use
the various features of the TEGL Windows Toolkit. They are intended for
educational purposes only. TEGL grants you the right to edit or modify
these game programs for your own use but you may not give away, sell,
repackage, loan, or redistribute them as part of any program, in executable
object or source code form. You may, however, incorporate miscellaneous
sample program routines into your programs, as long as the resulting
programs do no substantially duplicate all or part of a game program in
appearance or functionality and all copies of all such programs bear a
copyright notice.

Limited Warranty:
With respect to the physical diskette and physical documentation enclosed
herein TEGL warrants same to be free of defects and materials and

workmanship for a period of one year from the date of purchase.

TEGL will replace defective Software or documentation upon notice within

the warranty period of defects. Remedy for breach of this warranty shall
be limited to replacement and shall not encompass any other damages,
including, without limitation, loss or business profits, business
interruption, pecuniary loss, and special incidental, consequential, or
other similar claims. This limited warranty is void if failure of the
Software has resulted from accident, abuse, or misapplication. Any
replacement Software will be warranted for the remainder of the original
warrantly period.

TEGL specifically disclaims all other warranties, express, implied, or
statutory, including but not limited to implied warranties of
merchantability and fitness for a particular purpose with respect to the
Software and documentation. In no event shall TEGL be liable for any loss
of business profit or any other commercial damage including but not limited
to special, incidental, consequential, or other damages.

Table of Contents

TABLE OF CONTENTS

SPECIAL NOTE for documentation on disk............c..cc.o... 13
Acknowledgement s . i v v it ittt it it ettt et et e e ettt 14
Chapter 1 — IntroduUcCtion.iiii it intienteeeeeeeeeeaeeenas 15
Programming with TEGL Windows Toolkit..........eeceeee... 15
The Components of TEGL Windows Toolkit.............c..... 15
What's On youUr disKksS..i ittt ittt teeeeeeeeeeeeeennens 16
Installing TEGL Windows on your SysStem...........eeeeee.. 18
Development System RequirementsS........c.oieeieneeneeneenns 18
Compiling with Turbo Pascal.......iiiiiintenteeeeeeeeenns 18
Compiling with Quick Pascal.......ii ittt eeeneeeeeennns 18
How to use this Reference Manual..........oi it eeeeenenn 18
TEGLSUPEIrVisSOr ProCedUr . v v ittt eeeeeeeeeeseeseenens 19
Program FrameworkK. ... ittt it ittt ittt tetneeeeeesesnenens 19
Frames Or WindoWsS 2. v v o vt it ittt et eeeeeeeeeneeeesoeeseesenas 21
How to Contact TEGL Systems Corporation............eeee.. 21
Chapter 2 — TEGL EaASy et ettt eeeeeeeeeeeeeeeeoeneosnenseens 22
What TEGL Windows Toolkit can do.. ...t inienteeeeeeenns 22
Event-Driven Code. ...t in it eeeeeeeeeeeeeeeeeeeseeeeeas 22
Attaching your Function to an Event...........eiiieeeeenn. 23
a1 4L 24
LD o 6 24
A Minimum TEGL PrOgramM. « e eeeeeeeeeeneenesoesesseeseeaas 25
Adding Menus (Top Down DeSign) ¢ v vv it ententeeeeeeeeeeenan 25
Adding your First Event.......iieii it enteeteeeeeeeeeeenns 27

P E G L A S Y ¢ e ¢ e e o e o e o e oo oeoeneneeesesesesesessssssssnseeesees 29
ActiveBULLON ProCedUrE. @i v it ittt it eneeeeeeeoeeseeseeean 29
ColToX FUNCEION . et i ittt et ettt ettt e e seeeeaseanens 30
ErrMess ProCedUr . . v . vt ittt it iteteeesesesenesesenenens 30
FitEFrame ProCedUr . v i vt ieteeeeeeeeeeeeeenesoeeseesenns 31
FrameFromlIcon ProCeduUre.u it i it it eteeeeeeenenenens 31
FrameText ProCeduUr vt it ittt ittt etesenenesenenenens 32
GetMousey FUuncCtion. ...ttt ittt ittt teeeeeeeanans 32
GetYesNO FUNCLION. .t vt ittt it ittt ettt ettt eeseaseenens 33
EasyTEGL ProOCEAULE . &t vttt ittt et et asasesesesesesenesess 33
LastCol FUNCLIOM. et ittt ittt ettt ettt seeeeeseeseenens 34
LastROW FUNCLIOM .t i it ittt it ittt ittt et eeteeseaseenens 34
OutFrameTeXtXY ProCedUre. & vt it ittt et et eeesesesenenens 34

QUIL EvVeNnt . ittt ittt ettt ettt eeeeeeeeeeseeseeneeans 35
QuUickFrame ProCedUrE. ...t et e eeeeeeeeeeeeesoeeseesenns 35
RestoreFont ProCedure. ... it ittt titeteteseeenenenens 36
ROWTOY FUNCE IO . it it ittt et ettt teeeeeeeeeseeseesenns 36
SelectEasyFont ProCedUre. . v . vt v it tntneeeeeesesesnsnsos 37
SetEasyFont ProCedUre. ... ittt it tn e eeeeeeensesnsnsss 37
Chapter 3 = TCONS .ttt ittt ittt eeeeeeeeeeeeeeeeeenseenseenens 38
The ICON EdifOr . it ii i in et teeeeeeeeeeeeeeeeeeesoeeseeenns 38
The Main Bar MeNU. . vt et e et eeeeeeeeeeeeeeeoeeseeseesens 38

17 e w1 o e 38

The Drawing Bar MeNU. . oo oot et eeeeeeeeeeeeeseeseenens 38

ICON ConsStant s . vt ittt ittt ettt st teteeeseeesesssssesneness 41
PULpPicCt ProceduUre. ...t ii it teeeeeeeeeeeeeeeeeeeneens 41

ICON Assembler ProCedUTr e S . . e eeeeeeeeeeeeeeeeeennnns 42

Programmer's Reference Guide - 4 - TEGL Windows Toolkit

Table of Contents

TCON Utdlities . e u ittt ettt eeeeeeeeeeeoeeseeseenaees 42
0 1 D 42
0] 43
0] 43
0 1 N 43

ICONS in TEGLIcon Unit.... ittt ittt etnenennens 44

Chapter 4 — FrameS. . i i e eeeeeeeeeeeeeeeeeeeeoeneoeeeeenens 45

Creating, Manipulating, and Dropping FrameS.............. 45
CountFrames FUunCLion. ...ttt ittt ittt eenenennnens 45
FrameExist FUNCLIon.ttt ittt ittt tetenennens 45
PushImage ProCeduUr vt it ittt itetetesenesesesenenens 46
PopImage ProOCEAULE . & v vt ittt ittt et etesesesesesesenesess 47
RotateStackImage Procedure. .. .c . vt ittt iteteeeeenenens 47
RotateUnderStackImage Procedure.o i et et eterenenens 48
DropStackImage ProCedUre. .. v it i ittt et enesesesenenens 49
HideImage ProCedUr . . vvi it teeeeeeeeeeeeeeeeseeseesens 50
ShowImage ProOCEAULE. & v vt i ittt te e eeeeeesesesesesnsesos 51
ShowCoordinates Event..... ...ttt eneneennnn 52

Preparing a Frame for Update. ...ttt iinteeeeeeenns 52
PrepareForPartialUpdate Procedure........ovieeteeeenn. 52
PrepareForUpdate Function.......oei it in e teeeeeeenns 53
CommitUpdate ProCedUre. ... e it eneeeeeeeeeeeeeeenens 54

MOVING @ Frame. i it ieteeeeeeeeeeeeeeeeeoesoeseeseeseenas 55
FrameSelectAndMove Function..........oii it ennnnnn. 55
SetAutoRotate Procedure.ttt ittt tinennenn 56
SetMoveRestrictions Procedure........ ..t ennn. 57
SetFrameMobility Procedure.i.u it intenteeeeeeeenan 57
SetMoveFrameCallProc Procedure.o ie i intineenennenn 58
MoveStackImage ProCedUre. . .v . vt v it tntneeeeeeensnsnensos 59
MoveFrame ProCedUIrE. ... v ittt iie e ennenneeneas 60

Low Level Frame FuUunctions........ ittt ieeneennnn 60
UnLinkES ProCedUre. ..ttt et ittt tteeeenenneneeneas 60
LinkES PrOCEAUTL . ¢ ittt ittt ettt ettt eeseeeneneeness 61
LinkUnderFS ProCedUTLE. & v it ittt tineteeneeeenenenaness 62
CreateImageBuffer ProCeduUre.c.i it iteteeeeeeeeeeess 63
DropImageBuffer Procedure.c. ittt ititeteeesenenens 64
GetFSImage FUNCLION. .t ittt ittt ittt ittt teeeeneeenens 65
PULFSImMage ProCedUr e . v v vt i ittt ettt eteseneseseseneness 66
FreeImageBuffer Procedure.u it ittt iteteeesenanens 67
GetPartialFrontImage Function........c.iei it eeeeeennsn 67
GetFrontImage FUNCLIoN. ..ot ittt ittt eeteeeeeeeenens 68
PagelInE S ProCeAULE . v v vt it ittt et etesesesesesesesenesess 68
LockImage ProCEedUTE . i v i it it ittt eeeeeeeeesesesesesesess 69
PageOULES ProCedUr . . v i vt i ittt eteteseseseneseseneness 70
SetImageCoordinates Procedure.v it ie i inteeeeeeeenan 70
PageOutImageStack Function........oii it ieneeneennn 71
UnLockImage ProCeduUr vt ittt titetesesesesesenenens 71
UnUselmage ProCeAULE . v v vt it ittt et eteteseseseseseseness 72
Uselmage ProOCEAULE . & v vt ittt ittt etetesesesesesesenesess 72

Mouse CliCk Areas. .. iii i it ittt ettt eeeeeeneeeeneesens 73
DefineMouseClickArea ProCedUre.u it tnnnnennnnenn 73

FindMouseClicKkPtr FUNCEION . v v it vt ittt et ettt e e eeennas 75

Programmer's Reference Guide - 5 - TEGL Windows Toolkit

Table of Contents

ResetMSClickActive Procedure.t intenteeeeeeenns 77
ResetMSClickCallProC ProCeduUre. ... it enteeteeeeeeenns 79
ResetMouseClicks ProCedUrE. v v v vttt e eneeneeeeeeeeeeenns 80
ResetMSClickSense ProCedUre. .. .vi et e et enteneeeeeeeenns 81
LY @ T T 83
ClearKeyBoardBuf Procedure.oi ittt ittt eeeeeeeneeess 83
ClearTEGLKeyBoardBuf Procedure.o ittt ieeeeeenens 83
DefineGlobalKeyClickArea Procedure.uouveeeeeeennn 83
DefinelocalKeyClickArea Procedure......cuueeeeeeeeennn 84
DropKeyClicKk ProCedUre. vt it ittt eeeeeeeeeeeeenenens 85
FindKeyClickPtr FUNCLIOoN. .. ittt ittt ittt teeteeeeeeenns 85
ResetKeyClickCallProc Procedure. ...t eeteereeeeeeenns 85
Chapter 5 — MeNUS .t ittt ittt eeeeeeeeeeeeeeeeoeneoeneeenens 87
Creating @ MeNU. « v i ii it i et teeeeeeeeeeeeeeoeeeeesoeeseennns 87
Creating a entry text list......iiiiiiiiiiin i eeeeenans 87
CreateOptionMenu FUNCLIO0N. .. ittt ittt ittt eneeeeeeeans 89
DefineOptions ProCedUrE. « v vt ittt eeeeeeeeeeeeeeenns 90
CreateShadowOM FUNCLioN. . v ettt ettt eeteeeeeeeenens 91
ResizeOptionMenu ProCedUrE. ¢ v v et ieeneeeeeeeeeeeeeenns 92
ToggleCheckMark ProCedUre. ... vttt it ettt eeeeeseeeeess 93
ToggleEntryStatus ProCedure. ... v ii ittt it eeeeeeeeeeess 93
ReplaceOptionText ProceduUre.t en e eeeeeeeenns 94
ToggleOptionBar ProCedUre. .. .vi it ei it ntenteeeeeeeeeens 95
SetOptionMenuColors ProCedure. v et ieteeteeeeeeeenan 96
SetOptionMenuBorderColor ProCedUre. ...t eneeeeeeenan 96
SetHideSubMenu ProCedUre. ...t e itenteeeeeeeeeeeeeenan 97
Creatding @ Bar MeNU. ..ot eeteeeeeeeeeeeoeeeesoeesoeeseeeans 97
CreateBarMenu ProCedUTrE. .« v v vt it ittt eeeeeeeeesesesesess 98
OUtBarOption ProCedUre. . v it it i i ettt eeeeneeeeeeeeeeenns 98
SetBarTextColor ProCedUre. v v vt v ittt tnteeeeeeesesnsnsss 99
SetBarMenuColor ProCedUre. & v vt vttt e tneeeeeeeesesnsnsss 99
SetBarBorderColor ProCedUrE. v v v vt vt e teeeeeeesesnsnses 100
SetBarBorderOff ProceduUre. ... vt ittt tneeeeeneeenensos 100
SetBarShadowtext ProCedure.ot tnenenenensnnns 101
SetBarFillStyle ProCedUrE . @it eneeeeeeeeeseeseenan 101
SetBarMenuMargin ProCedure. ... it et ieteeteeeeeeeeean 102
Tcon OpPtion MeNUS . o vt et i oeteeeeeeeeeeeeeeeesoesoeeseeseeas 102
DefineOptionClickArea Procedure. ... c.ueuteereeeeeeenns 102
ResetOptionMenuEvents Procedure.cuiieeneeeeenns 103
Chapter 6 - Mouse, Keyboard and Timer HandlersS............. 105
D B U s a5 A 105
SWapTEGLINtrOff Procedure. ... v i iiintn e eeeneeenennns 105
SWapTEGLINEIrONn ProCedUr . . vt vt vt vt vt e eesesesesesnsnsss 106
MoUuse EmUlation. ..o et et eeeeeeeeeeeeeeeoeeseeseeseenas 106
MCUrsOorOff ProCedUr . . v vt i ittt tnteeeeeeesesnsesnsnsas 106
MCUTrsSOrOn ProOCEdULE. & vt ittt ittt e teeesesesesesesnsssss 107
MSELPOS PrOCEAULE . vt vt vttt ettt e oo sesesesesesesesnsnsss 107
Standard Mouse FUNCLI0NS . i vttt ittt ittt eeteneeeeeeeeenns 107
ShoWMOUSE PrOCEAULE . & vttt ittt ettt e tesesesesesesnsnsss 108
HideMousSe ProOCEdUL . . .ivi it teeeeeeeeeeeeeeeeseeseenens 108
SetMousePosition Procedure. ...t ittt ieteeeeeeeenan 108

CUursorShape ProCEdUTE . i v i vt ittt it eeeeeeeeesesesesesess 109

Programmer's Reference Guide - 6 - TEGL Windows Toolkit

Table of Contents

SetMouseHotSpot Procedure. ... v it i in it tneteenenenensns 110
SetMouseColor ProCEdULE . & v vttt ittt e teetesesesesesnsnsss 111
MousePosition function.......ii ittt teneeeeeenan 111
GetButtonReleaseInfo Procedure.ou it ittt iteeeeenens 112
GetButtonPressInfo Procedure.o it ittt iteeeeeeenens 112
ClearButtonInfo ProCeduUre....u i it ittt ittt eeeeeseneeess 113
SetMouseMinMax ProCedUrE. vt en e eeeeeeeeeseeseesan 113
FrozenMouse ProCedlUr v it ittt itetesesesesesenenens 114
FreezeMouse funcCtion.......oiiii ittt ienieeeeneeenenens 114
UnFreezeMouse ProCeduUr v it ittt itetenesesesenenens 115
SetMouseSensitivity Procedure.ot ii i intinteeeeenan 116
GetMouseSensitivity Procedure.ttt teeeeeeenn 116
SetKeyBoardMouse ProCedUr . . .v . v vt i e eeeeeesnsesnsnsss 117
SetKBStepsS ProCedUr . v v i i ittt it teeeeeseeesesesnsnsss 117
GetKBSteps ProCedUre. v v vt it it ittt et eeeeeeeeeeeseseness 118
Timer FUNCELIONS . i ittt it et ettt ittt eeseeseeseeseenans 118
SWapPTimerOUt ProCedUI . @ v v vt ittt e teeeeeeeeseeseeseenan 119
SwapTimerIn ProCedUre. v ittt ittt eeeeeeeeeeeeeseenan 119
SetTimerStart ProCedure. ...t i it it eeteeteeeeeeeenan 119
ResetTimerFlag ProCedUre. ..o ettt eneeeeeeeeeeeeeenns 120
DropTimerCount ProCedUre. .. .c.uvee it eneeneeeeeeeeeeenns 120
TimerSwtich Procedure. ... ii ittt tenteeeeeeeeeeenens 121
Keyboard Interrupt Events..... .ttt ittt tntnenenenenens 121
Keyboard Scan CodesS. . v vttt ittt teteeeeeeeeeeesssesnseens 122
AddCaptureKey ProCedUrE. & . vt v ittt tneteeeeesesssesnsnsos 122
DeleteCaptureKey Procedure. .. v vttt ittt iteteeenenenens 123
TEGLReadkey FUNCLI0N. . vttt ittt ittt ettt eeeeneeenens 123
TEGLKeyPressed FUNCLion. .o . ittt ittt et eeeeeeeenens 124
NilKeyCallProC FUNCLION. ¢ ittt ittt ettt e teeeeenenns 124
Keyboard MiscCellaneOUS . ot eeeeeeeeeeeeeeneeoesneseeeeeas 125
SetShiftKeysS ProCedUre . v v it ittt e teeeeeeeeeeeseeseesan 125
Show BULLON SLatUsS. ... ittt ittt ittt ettt etenenesans 125
ShowButtonStatus Event..... ..ottt ittt ittt tnenenennns 125
Chapter 7 - Assembly Language Graphics..........eeieeeeeen. 127
Setting Video ModesS . i v it ittt ittt teeeeeeeeeeeeeeseeseenns 127
CGAGA0X200X2 ProCedUr B . v i vt ittt eeeeeeeeesesesesesesess 128
EGA640x350X16 ProCeduUr . . v i vt ittt itetesenenesesenenens 128
Herc720x200X2 ProOCEdUTLE . ¢ vt vttt ot eeeeeeesesesesesesess 128
SetVideoChodlCeS . i vttt ittt ittt et ettt et eeteeseaseanan 129
SVGABOORE00RK L6 . v v et ettt e et et e e e et et ettt 129
VGAGA0xX480X16 PrOoCEAULE . vt vt ittt e teeeeesesesesesnsnsss 129
VideoAULoDEetECt . i v it it i it et it ettt ettt et e seaeeaaan 130

Y I LY o Ot 130
Graphic Primitives. ... ittt ittt ittt teeteeeeeeeeeeennns 131
FastLine ProCedUr . c it eeteeeeeeeeeeeoeeoeesoeeseeseens 131
PULPIXS ProCedUre. @ v i it in it teeeeeeeeeeeneseeseeneens 132
Getpixs FUNCLION. ittt ittt ettt ettt eeeeeeeeseanens 132
Getbitil Procedure. . .c.u ittt ittt eeeeeeeeeeeeeeeenens 133
Putbiti Procedure. ...t it ittt eeeeeeeeeeseeneens 133
BigImageSize FUNCLION. ..ot ittt ittt teneeeeeeeeeeanens 134
SetAPAgEe PrOCEAUTL . vt v it ittt ittt tesesesssesssesnsnsss 134

SetVPage ProOCEedUr . . v vt ittt n e eeeeeesesesesesesnsnses 135

Programmer's Reference Guide -7 - TEGL Windows Toolkit

Table of Contents

FlipAPage ProCedUre. . it ie it teeeeeeeeeeeoeeseeseeneens 135
FlipVPage ProCedUre. ... it it eeeeeeeeeeeeeseeseeneens 136
VideoPage FUNCLiON . . vt ittt ittt ettt it eeteeeeeeeaseanan 136
New Graphic Primitives.ttt teeteeeeeeeeeanns 137
Extractpixs FuncCtion.c.oiii ittt teeeeeeeeeenens 137
EXTractIMG ProCedUre . v v vt it ittt et eteteseneseseseneness 137
OverlayIMG ProCedUL e . v v vt vt ittt eteteseseseseseseneness 138
SWaPBYLES PrOoCEedULE. & v ittt ittt it ettt tesesesesesnsnsos 138
Graphic DerivativesS. .. v et ettt ittt ittt ettt teeeeeeeeenns 138
XORCOrnerBOX ProCedUre. & v vt i ittt it etetenesesesenesess 139
XORBOX ProOCEaUrE . v v vttt ittt ettt et et atesesenenesenesess 139
ICOon GrapPhicCS . v it ittt it et ettt et eeeeeoeeeeeseeseeneens 139
PULPIicCt ProceduUre. ...t ii ittt eeeeeeeeeeeeeeeeseeneens 139
PictSize ProCedUre. . i vt i et ieteeeeeeeeeeeneseeseeeenens 140
ADOTrt PrOCEAULE . v i vt ittt ettt ettt et e sesesesesesesnsnsss 140
Chapter 8 - Special Effects. ...ttt tenteeeeeeeenns 142
Screen BacCKkdrop. ..o v ittt ittt it e et e et e et et 142
ClearTEGLSCreen ProCEedUTrE ..« v i it vt it et eeeeeeeeesesesess 142
SetTEGLBOrderShoWw ProCedUrE. v v v vt i tnteeeeneeeeensnsss 143
SetTEGLBaAcKkCOlor ProCedUr . . v v vt vt vt v tnsesesesesnsnsos 143
SetTEGLBOrderColor ProCedUr . v v vttt v teeeeeeesesnsnsos 144
SetTEGLFillPattern ProCedUre. . .v . etenteneeeeeeeeeean 145
SetTEGLF111Style ProCedUre. . cu i it e et eeteeeeeeeeeeenan 145
Creating ShadoW BOXeS eeieeeeeeeeeeeeeeoeeeoeesoeeseennns 146
ShadoWBOX PrOCEAULE. & vt ittt it e e eeeeeesesesesesnsnsos 146
ShadowBoOXTeXt ProOCedULE. & v vt v ittt tnteeeeeeesnsesnsnsos 147
SetShadowCo0lor ProCEdUTL . vt vt vttt v teeesesesesesnsnsos 147
SetShadowBorderColor ProCedUr . . v v e teteeeensesnsnnss 148
SetShadowFillPattern Procedure. ... c.ou et eeteeeeeeeeean 148
SetShadowFillStyle ProCedUre. ... it et eeeeeeeeeeesan 149
Creating Shadow TeXt .. .o.iiee it ieeeeeeeeeeeeeeeeseeseennns 150
Shadowtext ProCeduUre. ... i ittt e eneeeeeesesesnsnsss 150
SetShadowTeXtType ProCedUre. .. v v ittt tneeeneeeeensesss 150
SetShadowTextShadow Procedure.ot eneneeensnenss 151
SetShadowTextHighlight Procedure.........c.oiiiieeeeeenn 152
ShadowTextHighlightOFF Procedure...... ..ot eeeeeeeeenn 152
Other text effeChs. . ittt ittt ittt ittt ettt et it ennnens 153
ExtendTextXY ProCedUre. @i vt ittt it eteteseseseseseneness 153
ShiftTextXY ProCedUre. . v it teeteeeeeeeeeeeseeseenan 153

2 3w o 0 = 154
DefineButtonClick Procedure...... ..ot iineneeeeenns 154
DefinelLongButtonClick Procedure.......ou i teereeeenns 154
DefineUserButtonClick Procedure.oui i eereeeenns 155
PutUserButtonClick Procedure.ot intenreeeeeeenns 155

4 @ @ X< T e o = 156
CollapseToIconShow Event..... .ottt ittt iteeeeeeenens 156
CollapseToMsClick Event. ... oottt ettt enteeeeeeeenens 156
ExplodeFromIconHide. ..ot ii ittt ittt ittt teeeeeeeeneens 157
ExplodeFromMsClick Procedure. it e teeeeeeeeeenns 157
Moving and Transforming XOR BOXES. .. it eeteeeeneeeeeenan 158
MOVEBOX PrOCEAULE . vt vt vttt ettt e oo sesesesesesesssnseses 158

Z1PTOBOX ProOCEeAUL . i v it ittt ittt eeteeeeeeeeseeseesenns 159

Programmer's Reference Guide - 8 - TEGL Windows Toolkit

Table of Contents

Z1iPFromBOX PrOCEdUIE . @i vttt neeeeeeeeeeeeseeseesenns 159
ICON BULELON . i i ittt it i e e e e e i e e e e et et ettt et eeeeeeeeaeeeeas 160
DrawLongButton Procedure. v ittt ittt iteteeesenenens 160
Chapter 9 — Writing EventS. ...ttt ii ittt nteeeeeeeeeeenas 162
MOUSE AWA LI S St v v v v ottt e oot eeonseeeeneneeeeneeeeeeeeeeeenas 162
FindFrame FUNCEION . v it ittt ittt ettt ettt eeeeeeeeneens 162
CheckMouseClickPoOS FUNCLI0N .t vt ittt ittt ittt ettt eeeennn 164
CheckForMouseSelect FUNCELION. v v it i ittt ittt e et eeeenn 165
Special EffeChS. .t ii ittt ittt teeeeeeeeeeeseesaanns 167
PressBULLONn ProCedUr e . @it ittt it ittt ettt e teeeneeeennas 167
VisualButtonPress FUNCLion. .. v ittt ittt ieeeeeennn 169
Chapter 10 — Animation....c.u.ee ittt ettt neeeeeeeoeeseeeeenas 171
ANImAtion OVeIViEW. i i it i ittt ittt ittt et e eeeeeeeeeneeeeenns 172
Animation OOPS MethodsS . . v ittt it ittt ettt ettt teeeennns 174
Origin Procedure Method.iii ittt iinieeeeeeanens 174
GetOrigin Procedure Method...... ..ttt teeeeeennn 175
Destination Function Method.......iiiiii ittt ieeeennnn. 175
ResetFrame Procedure Method.ttt ittt iennnn. 176
Sequence Procedure Method....... ..ottt inenennn. 177
ResetSequence Procedure Method........... 177
AddFrame Procedure Method.ttt ittt ttenneeennn 178
CurrentFrameNumber Function Method...........c.oiiieen.. 179
AnimateInit Procedure Method.......ui ittt eneennn 179
Animate Procedure Method.ottt teeeeeeennn 180
Complete Procedure Method.......ci ittt eeennns 180
Example Animation.t ii ittt eeeeeeeeeeeeeeeeens 180
Chapter 11 — Writing TexXt ... vi it ittt it enteeteeeeeeeeeeanas 183
TE GLWIEE Variable S . it it ittt ittt ettt ettt teeeeeeeeeeeneens 183
Bit-mapped FoONnLS. .ttt ittt ettt eeeeeeeeeeeeseeeeeas 183
Creating Your Own Bit-mapped FontsS.......ieiiieteneeenans 183
TEGLWrt Functions and ProCedUreS . v . v e ettt eeeeeneeeneeennn 183
OULTEGLTEeXtXY ProCedUr e . v v i i ittt it ettt eeeeeeneeeeenas 184
TEGLTextWidth FuncCtion. . v ittt ittt ittt et eeeeennn 184
TEGLCharWidth FunChLiomn. v ittt ittt ittt et ettt eeeennn 185
TEGLCharHeight Function........ii ittt inteeeeeeeenens 185
TEGLWrtChar ProCedUr B . @ v v ittt ittt et ettt et eeeeeeeenaeen 186
SetProportional ProCedUre. ...t e e teeeeeeeeeeeean 186
Set TEGLEFONE ProCedUTr e . i v i it ittt et ittt et ettt teeeeeeeeas 186
UnderLineChar FUNCLIi0ON .t vt ittt ittt ittt et ettt eeeeenenns 187
Showing ALL Fonts FONTTEST.PAS. i i ittt ittt et e et eneeeeeenns 187
FontName FUNCE IO . i i it ittt ittt ittt ettt ettt eeeeenneas 187
ShowOneFont Eventttt ittt eteeeeeeeeneeeens 188
ShOWEONE S EVEeNE i i i ittt ittt e ittt et ettt et ettt teeeeeeeeas 188
Chapter 12 — Event Library ..o e oo oo et eteeeeeeeeeeeeeanns 189
The File SeleChOr . v it ittt ettt eteeeeeeeeeeeeeeeeeeeeeenn 189
SelectaFile fUNCLiOoN. .t ittt ittt ittt ettt ettt eeeeenens 189
String Editing Dialog. v e e ittt eeeeeeeeeeeeeeseeeeenas 191
EditString ProceduUre. @ v it it it eeeeeeeeeeeeeeeenenens 191
Mouse Sensitivity Dialogue WindoW.ot eeteneeeeenennn 191
SetMouseSenNsSe ProCEAUL . v vt ittt ottt ettt eeeeeeenneeeens 192
Bells & Whistles, Sound Unit.....uiiiit ittt eeeeeeeenennn 192

AsSKkSOoUNASENSE EVEeNE i i i i ittt ittt ettt ettt ettt eeeeeeeeees 192

Programmer's Reference Guide - 9 - TEGL Windows Toolkit

Table of Contents

Beep ProOCEAULE . &t ittt ittt ettt et et et asesasesesesenesess 193
SlideBeep ProOCEAUTL . v vt vt it eeeneeeeeeeoeeseeseeseenan 193
SoundSwitch Procedure.ttt ittt tneneennnn 194
Chapter 13 - Virtual MemoOry Manager eeeeeeoeeeeeeeeeeean 195
Heap Management . .@ . i ittt i ittt it eeeeeeeeeeeeeeoeeeneeenens 195
The Turbo Pascal Heap Manager eeeeeeeeeeeeeeeeeennns 195
The TEGL Heap Manager . i v e e e e eeeeeeeeeeeeeeeenensneeseens 196
The TEGL Heap Error FUNCLioN.......i ittt inteeteeeeenens 196
The TEGL Heap Manager FUNCLIONS. ...ttt iitinteeteeeeenens 197
TEGLGetMem ProCedUre. . v ittt ittt ennenneenenns 197
TEGLEreeMem ProCedUTrE. v v vt it tittneeneenennenneneneens 198
Expanded Memory Manager (EMM) i it tn e eneneneesneneens 198
Expanded Memory FUNCLIONS. . vt ittt ittt ententeeeeneeeeenns 199
EmmInstalled function.........oiiiiiiiiiiiiiinennnnnn. 199
EMSPagesAvailable function........ieiiiiiiniineeeeennn 200
AllocateExpandedMemoryPages function.................. 200
MapExpandedMemoryPages function.........eeieeteeeenennn 201
GetPageFrameBaseAddress function..........ciieeieeen.. 201
DeallocateExpandedMemoryPages function................ 202
GetVersionNumber function............iiiiiiiineennn.. 202
GetHandleCountUsed function........ ..., 203
GetPagesOwnedByHandle function..........c.oieeieeeeneennsn 203
Expanded Memory Test PrOgram.eeeeeeeeeeesesesesness 204
A RAM Disk Driver ...t iiii ittt ettt teeeeeeneeeeneeeens 207
EMSOpen fUunCLion. . it it ittt ittt ettt ittt teeseeeeeneens 207
EMSSeek pProCedure. . v vt ittt it ittt tetesenesenenenenens 208
EMSBlockWrite proceduUre. @ ..t i ettt eneeeeeeeeeeeeeenns 209
EMSBlockRead pProCedUre. & v vt ittt ittt et etetenesenenenens 209
EMSClOSE PrOCEAULE . ¢ v vt vttt et et et asesesesesesesesesess 210
Virtual Disk HeaD . et e ittt ittt eeeeeeeeeoeeeeeeoeeseeseeans 211
VDskOpenHeapFile function.......ii ittt teeeeeeeeean 211
VEMSOpenHeapFile function.ottt iinteneeeeeeean 212
VDSKGetMem function.i ittt teeneennns 213
VDSKEreeMem PrOCEAULE . v v vt vt vt v oo sesesssesesssssnssnsses 214
VDSKWriteHeapData pProCeduUre. .« v it e it et eneoneeeeeeean 214
VDSKReadHeapData pProCedUre. v v vt vttt it e tneeensesnensas 215
VDskCloseHeapFile pProCedUre. c v it ententeneeeeeeeeeean 215
The Virtual Heap Error Function.........c.oieeiieteeeeeeans 216
The Virtual MemoOry Manager ..o e e e e eeeeeeeeeeeeeseeseeeans 216
UseHardDisk proCedure.ot i ettt neeneeeeeeeeeeeens 217
MoveFromVirtual ProCedULE. & v v vt it et eoneoesoeeeeean 217
MoveToVirtual function.........o.i ittt tneneennns 218
FreeVirtual proCedure. ... ie ittt teneeneeeeeeeeeneens 218
CloseVirtual pProCEedULE. . v v i ittt it enteeeeeeeeeeeseenens 219
TEGLMaxAvail Function........i ittt teeneneannens 219
VirtualMemUsed Function........c.oii it innneennns 219
The Virtual Memory Error Function..........c.eieeteeeeeeens 220
Resolving FragmentS. .o e et teeeeeeeeeeeeeeeeeoeeseeeeens 220
ReserveHugeMinimum procedure. ...t ii i enteeteneeeeenns 221
Sizing and SliderS. .t i e ittt ittt eeeeeeeeeeeeeeseeseennens 223
DefineResizeClickArea Procedure........oiiiiiiinnnnn. 223

DefineResizeMinMax ProCedUr euu e et eeeeeeeneneeeennes 224

Programmer's Reference Guide - 10 - TEGL Windows Toolkit

Table of Contents

DefineSliderArea ProCedUrE. « v .t eeeneeeeeeeeeeeeeenens 224
DropSliders ProCEedUL . v v vt et teeeeeeeeeeenesoeeseesenns 225
FindSliderFS FUNCLION. .ttt ittt ittt ettt eeseneeenenns 225
ResizeFrame ProCedUr . ..t et eeeeeeeeeeeneeeoeeseesenns 226
SelectAndMoveFrame Eventttt it intnenenennns 226
SetSlidePosition Procedure. ... et it inteeeeeeeenan 227
Miscellaneous FUNCLIONS . .t ittt ittt ittt teeeeeseeeeeneens 228
CheckCtrlBreak Procedure. ... it ittt ittt eeeeeeeeeeess 228
CheckCtrlBreakFS ProCcedure. .. it it it it eeeeeeeseeeeess 228
DropTimerTick ProCedUre. ...t ittt eneeeeeeeeeeeeeenns 229
NilUnitProcC Eventottt ettt teeteeeeeeeeeeenaens 229
OverLapArea FUNCtLion. ...t ittt ittt teeeeeeeeneens 230
SetTimerTick ProCedUrE. v v v it ittt e teneeeeeeeeeeeeseeean 230
o o o PN 231
Bar ProCedUre. v i ittt ittt ittt et eteseseseseseseneness 232
CloseGraph Procedure. . v it ittt ittt it eeeeeeeeeseseeess 232
DetectGraph Procedure.ttt it ittt eteneeenenenens 233
GetBKkCOlor FUNCLIO0N. ot ittt ittt ettt ittt eesenseanens 233
GetColor FUNCELION. i vt ittt ittt ettt et e ettt eesenseanens 233
GetFillPattern ProCedUre. « v it eeeeeeeeeeeeeeeeenens 234
GetGraphMode FUunCtion. ... ii ittt ittt enteeeeeeeenens 234
GetMaxX FUNCLIOM .t ittt ittt ittt ittt eeeeeeeeeseeseenens 235
GetMaxyY FUNCL IO .t i ittt ittt ettt teeteeseeseeseenens 235
GetTextSettings Procedure. .. .v.u. it it i it enteeeeeeeenens 235
ImageSize Function \ TGraph.........oeiiiieinniennnnn. 236
GraphResuUlt FUNCLion. .. i it ittt ittt ettt teeeeeeeenans 236
InitGraph ProcCeduUre. . v i i ittt it eeeeeeeeeeeeeseeseens 236
Line ProCedUrB. i it ii i ittt teeeeeeeeeeeoeeeeeseeseenens 237
OULTEeXLXY ProCedlUr . . v i vt it ittt et eteeesenenesesenenens 237
Rectangle ProcCedure. ... v ittt ittt eteteeesesenenenens 238
RestoreCrtMode Procedure \ TGraph..........eeeeveenn... 238
SetBKCOlOr ProCedUr . vt v ittt ittt e tnsesesesesssesnsnsos 238
SetCOlor PrOCEAUTL . vt vttt ettt et et e sesesesesssesnsesss 239
SetFillPattern ProCeduUre. ...t it enteeteeeeeeeeeeenan 239
SetFillStyle ProCedUr . @ vt ittt eeeeeeeeeeseeseeseesan 239
SetTextJustify Procedure.ttt it eeteeeeeeeenan 240

AP PEND I CE S . & ittt it e i i e e e i ettt ettt e e e e 241
Video BUffeIrS . i vttt ittt it ettt ittt eeteeeeeeeeseeseanns 241
L 0 ¥ K 3 7 241
o= N 4L 241
A Frame STacKk. ... ittt ittt ittt et ettt etenenenans 242
A Simple WindoW ManNagel ... oo e e e e e eeeeeeeeesoeseeseeseenas 242
Partial Image Update. . v vt ii ittt iteneeeeeeeeeeeeeeeenens 244
Refined Partial Image Update. ..v. ittt it ententeneeeeenns 244
A Refined Partial Image Update Algorithm................. 245
A Quick Run through the algorithm...........c..iiiieeeeen. 246
Turbo Pascal Heap Manager ... v .o e oo eeeeeeeeeeeeoeoeeeeens 248
TEGL Heap Manager . v o v et e e eeeeeeeeeeeeeeeeeeseneeesenseees 252
Combining the best of both Heap Managers (Coexisting)....255
Variables, Types and CoONnsSt ... it eitenteeeeeeeeeeeeeenns 257
ActivePage Word Typed ConsSt...iie it ententeeeeeeeeeeenan 257

CallProC ProcCeduUre Ty P .« et et et et eeeeeeesesesesesesens 257

Programmer's Reference Guide - 11 - TEGL Windows Toolkit

Table of Contents

N O) o = 257
Jagged Word Typed Const ...ttt ittt tneneneneeenensas 257
MSClick Boolean CONSt .. iie it eneeneeeeeeeeeeeeeeenan 258
MSSense Boolean CoONnSt ..ttt ittt it tneeeeeeeneesneneas 258
RmwBits Word Typed CoNnsSt ... ettt enteneeeeeeeeeeenens 258
Conditional Compilation.....ee ettt eneeeeeeeeeeeennns 258

A D < 261

Programmer's Reference Guide - 12 - TEGL Windows Toolkit

SPECIAL NOTE for documentation on disk

You have received Version II of the TEGL Windows Toolkit. The
documentation that you are reading is supplied on disk. We will have a
printed manual in the near future and it will be somewhat different that
what you are looking at now.

Because we wanted everyone to be able to read this manual and be able to
print it out we have not embedded any special control characters in it
with the exception of formfeeds at page breaks.

In this manual you will notice that at times there are references to
things like ctrlkey or keydown or something discriptive but somewhat odd.
Please, be imaginative, these will be icons when the manual is printed.

Programmer's Reference Guide - 13 - TEGL Windows Toolkit

Acknowledgements

Acknowledgements

In this manual references are made to several products

IBM is a registered trademarks of International Business
Machines Inc.

MS-DOS and Windows are registered trademarks of Microsoft
Inc.

MacIntosh is a registered trademark of Apple Computer Inc.

Turbo Pascal is a registered trademake of Borland International.

Programmer's Reference Guide - 14 - TEGL Windows Toolkit

Chapter 1 - Introduction

INTRODUCTION

Welcome to the world of the Graphic User Interface (GUI) in a DOS
environment. This book, The programmers reference guide to TEGL
Windows Toolkit II, will provide you with the basics (and more) for
getting started with using the TEGL Windows Toolkit.

TEGL Windows is a comprehensive GUI toolkit for the simplest to the most
complex system programming projects. In order to exploit all the
advantages of this toolkit, we encourage you to experiment and to try the
examples as listed in this manual.

Programming with TEGL Windows Toolkit

TEGL Windows Toolkit provides the framework to make programs easy to use.
If you are new to programming you will find the Toolkit fun and fast to
use. Experienced programmers will find their development time reduced by
using the Toolkit.

TEGL Windows Toolkit provides graphics that can communicate information
more effectively than text. For example, the graphical image of a folder
suggests that it contains documents, drawings, and even other folders.

TEGL Windows Toolkit also Provides functions that can build interactive
applications. Interactive means a type of user interface where a
significant portion of the design and development effort goes into making
the program user friendly.

TEGL Windows Toolkit is based on event handling. Events are such things as
a key being pressed on the keyboard; a timer signaling that some amount of
time has elapsed; a message indicating that the user has selected a
particular item from the menu or has selected an icon. A particularly
useful capability of this is that while the TEGLSupervisor is waiting

for one of these events to occur, you can set the timer to signal a
background task such as an internal print spooler. This limited
multitasking capability makes it easier to build very interactive
programs.

TEGL Windows Toolkit supports only a single application running at any
given time. The necessary code is linked into the final application code.
TEGL Windows Toolkit uses little RAM, requiring only 50k of the executable
program when all features are used.

The Components of TEGL Windows Toolkit

Now that you have a rough idea of what the TEGL Windows Toolkit is,

let's explore the components in more detail. The purpose of this section
is to give you an overall understanding of how to use the toolkit in your
program.

Programmer's Reference Guide - 15 - TEGL Windows Toolkit

Chapter 1 - Introduction

TEGL Windows Toolkit is subdivided into a set of libraries: multitasking
kernel; windowing screen manager; mouse, keyboard and timer handler; a
virtual heap manager; drop down and pop-up menu events; and an animation
unit.

TEGL Windows Toolkit provides a GUI to a computer running under DOS. This
interface is used in a number of entertainment products produced by TEGL
Systems Corporation (TSC). As TSC designed and built the entertainment
products, TEGL was created to build a set of software routines that were
needed by the games. TSC gathered these routines into modules, each
categorized by their overall function. For instance, all the routines that
manipulate windows form the TEGLUnit. Similarly, all the drop-down menus
and menu bars form TEGLMenu.

TEGL Windows Toolkit comprises the tools that were developed in writing
the first TSC applications. These tools are now available for developing
any application.

The modules are categorized by the kind of functions they deliver;
TEGLintr handles the mouse, keyboard and timer interrupts; TEGLMenu
provides drop down menus and menu bars; Animate provides icon animation;
and VIRTMem provides the virtual heap for almost unlimited windowing
ability.

TEGLUnit provides a high level integration between window frames,
mouse click areas, keyboard handler, timer interrupts, virtual memory, and
multitasking kernel.

What's On your disks
The distribution disks that come with this manual include the complete
library of routines used by some of the game products produced by TEGL
Systems Corporation.

For your reference, here's a summary of most of the files on disks:

README
This file contains any last-minute notes and
corrections, type README at the system prompt to
view the file. You may print this file on your printer
for future reference once you review the material.
TEGLUNIT.PAS
This is the window manager that provides the graphical
interface support for the other units. This module
provides the event supervisor and the frame/stack
coordinator.
TEGLMENU.PAS
This unit provides the drop down menu interface.
TEGLGRPH.PAS
This unit provides shadow boxes, shadow texts,
exploding and imploding boxes, pop-down/pop-up icon
buttons, etc..
TEGLICON.PAS

Programmer's Reference Guide - 16 - TEGL Windows Toolkit

Chapter 1 - Introduction

A library of standard icons; key OK, key CANCEL,
key NEXT, key LAST.

TEGLINTR.PAS, TEGLINTR.ASM

FASTGRPH.PAS *.ASM

Integration of keyboard and mouse handler. This unit
provides the standard mouse routines which integrates
the keyboard cursor keys and the mouse to provide a
seamless dual control of the mouse cursor; with or
without a mouse driver.

Fast assembly language graphics routines. This is the
core of the graphical routines that provide the
foundation for pop-down menus and movable windows.

This unit includes functions that interfaces with the
FASTGRPH and the ANIMATE unit, to allow the recognition
of video paging.

TEGLFONT.PAS FNT*.pas

VIRTMEM.PAS

SELECTFL.PAS

SENSEMS.PAS

SOUNDUNT .PAS

SWITCHES.INC

ANIMATE .PAS

TEGL.PAS

FONTTEST.PAS

DEBUGUNT .PAS

SAM* .PAS

Crisp proportional Bit-Mapped screen fonts, ranging
from 6 to 24 pixels in height.

Virtual memory handler that interfaces with TEGLUNIT.
This unit automatically pages out images from memory to
EMS, hard disk, or floppy (depending on availability),
when memory is at a premium. Also implements the far
heap for allocating data structures larger than 64K.

A standard event unit that may be used by any
application program to provide a dialogue window in
selecting file names from a list of file on disk.

A standard event unit that provides a dialogue window
that allows a user to adjust the sensitivity of a
mouse.

A standard event unit that allows a user to adjust the
duration and the sound output of a tone.

Conditional compilaton directive are contained in this
file.

A unit that allows icons to be animated.

A demonstration program that uses many of the features
of the TEGL Windows Toolkit.

A demonstration event unit that displays all available
fonts in movable windows. Used in tegl.pas (sample
program) .

A demonstration event unit that displays general
information regarding windows and the number of times
the mouse button has been pressed.

Programmer's Reference Guide - 17 - TEGL Windows Toolkit

Chapter 1 - Introduction

Some of the sample programs in this guide are provided
in ready-to-compile form.

EXECSWAP .PAS
A utility unit that swaps a pascal program from memory
to enable another program to execute. This unit makes
it practical to execute a DOS shell with programs that
are using all of memory.

Installing TEGL Windows on your system
The complete TEGL Toolkit is approximately 3 megabytes of source code
when expanded. Therefore, a hard disk is required for the installation.

At the DOS prompt, type INSTALL, and follow the instructions.

Development System Requirements

You must have 640k RAM, a hard disk drive, and an EGA/VGA (256K), CGA, or
Hercules graphics card and appropriate monitor on an IBM PC or compatible
computer. In our development, we've used an IBM PC AT with 2.5MB RAM, 72MB
hard disk, and a paradise VGA 256k card with a NEC/MultiSync 3D. We've
also tested all our examples on an IBM PC XT with 640k RAM, a 20MB hard
disk, and a ATI VIP VGA graphics adapter card with an IBM 8513 VGA color
monitor.

Compiling with Turbo Pascal

TEGL Windows Toolkit requires Borland's Turbo Pascal Version 5.0, as a
minimum, to compile the units. The Animate unit requires the object
oriented programming facilities provided by Version 5.5.

Refer to the Turbo Pascal Reference Manual for including and using units
within programs, as well as setting up the environment for referencing the
units.

Compiling with Quick Pascal

TEGL Windows works with Microsoft Quick Pascal Version 1.0.

Quick Pascal's integrated environment cannot be used to compile
applications using the Toolkit. It runs out of memory. The command-line
compiler must be used.

If you intend to use the MSGraph unit then you must define the symbol
Quick in the file switches.inc. See the appendix Conditional

Compilation for furthur information.

How to use this Reference Manual

This manual is organized in a presentation manner to lead you through the
concepts of the TEGL Windows Toolkit IT.

Each Procedure and Function is shown seperately with its name, parameter

Programmer's Reference Guide - 18 - TEGL Windows Toolkit

Chapter 1 - Introduction

list, the unit it is declared in, and other references. For a start here is
the main entry point into the TEGL Windows Toolkit TII.

TEGLSupervisor Procedure TEGLUNIT
Function
Main entry point.
Declaration
TEGLSupervisor;
Remarks
This should be the last statement in your main program
block.
Example
BEGIN
{ -- all the setup code for menus etc. goes first }
TEGLSupervisor;
END.

Program Framework

Most of the examples presented throughout this manual will require the following
minimal skeletal Pascal framework before the example code will compile and
execute. A few of the examples given are complete programs.

{ samshell.pas }
{SF+} { -- far code model is required for any functions that }
{ -- are to be used as Event Handlers }

Uses
dos,
graph,

virtmem,

fastgrph,
TEGLIntr,
TEGLICON,
TEGLGRPH,

Programmer's Reference Guide - 19 - TEGL Windows Toolkit

Chapter 1 - Introduction

TEGLUnit,
TEGLMenu,
TEGLEasy
SenseMs,
DebugUnt;
{ -- insert variables here }
{ -- insert procedures and functions here }
BEGIN
EasyTEGL;
{ -- insert the example code here }
{ -- press Ctrl-Break to exit program }
{ -- control is then passed to the supervisor }
TEGLSupervisor;

END.

Once control has been turned over to the supervisor then the only way to
exit a program is by a menu selection or icon that halts the program. Most
of the example programs don't have this so you must press Ctrl-Break to
exit. When Ctrl-Break is pressed then program control is turned over to

an Event Handler. In the case of the sample programs control is passed to
Quit in TEGLEasy.

An Event Handler, as covered in Chapter 4, is usually attached to an icon,
menu selection, or in this case the Ctrl-Break handler. The Ctrl-Break
handler, when attached to an exit event, allows the program to exit
gracefully by pressing ctrlkeyscrlock which is the break key on

most keyboards.

Chapter 2 provides a foundation to using the TEGL Windows Toolkit by using
a few program examples. Chapter 3 shows you how to create an icon using
the icon editor, and how to integrate and use the icons in your program.
Chapter 4 is heart of the windowing system, which uses most of the other
functions provided by the other units. In Chapter 5 we delve further into
how the TEGLMenu works along with TEGLUnit to provide the

standard drop-down menus and exploding windows. In Chapters 6 through 8,
we discuss some of the graphic and mouse primitives that the TEGLUnit
uses. You may use some of these routines independently of TEGL. In Chapter
10 we explore the Animation unit along with a sample application that

Programmer's Reference Guide - 20 - TEGL Windows Toolkit

Chapter 1 - Introduction

animates a button icon. Chapter 11 looks at writing text to a window using
bit-mapped fonts. Finally, in Chapter 12, we look at the Virtual Memory
handler and how to use VM within an application. The Appendices provide
greater details on the TEGL Windows Toolkit and the philosophy behind the
design.

Frames or Windows?

In this manual the word frame is used often. A frame is our term for
the implementation of a window. All the identifiers in the toolkit use
frame, not window. You can use these terms interchangeably.

How to Contact TEGL Systems Corporation
If you have any comments or suggestions, you may contact us by
writing to

TEGL Systems Corporation

780 - 789 West Pender Street
Vancouver, British Columbia
Canada, VoC 1H2

or phone us at

(604) 669-2577

Programmer's Reference Guide - 21 - TEGL Windows Toolkit

Chapter 2 - TEGL Easy

TEGL Easy

The TEGL Windows Toolkit provides tools to assist you in creating an
eye-appealing, functional and intuitive graphical interface to your
programs.

There is no fixed format that you must follow when using the TEGL Windows
Toolkit. Screen handling, menus, or push button icons are a function of
your program design and not a mandatory function of the TEGL Windows
Toolkit. However, the tools are provided so you can use emulate the

look and feel of most popular windowing packages without locking you

into a ridged menu system.

What TEGL Windows Toolkit can do

Overlapping windows are handled without having the application program
redraw the window whenever that window is uncovered. This removes the
complexity of having to redraw, which is necessary with some windowing
systems. The only time a window has to be redrawn is when it is re-sized.

The overhead in maintaining graphic images in memory is offset by the virtual
memory manager which automatically swaps the images to EMS and/or disk when
more memory is needed. Even with memory swapping, application programs are
faster and smaller than those written for other windowing environments.

TEGL handles all mouse and keyboard activities, including all selections
of a menu items and clicks on a mouse click area. When the user wants to
move a window for instance, the TEGLSupervisor handles all of the
user interaction from the clicks of the right mouse button on a window to
when the button is released to indicate the new position. When the button
is released, and MoveFrameCallProc has been installed for that window,
the TEGLSupervisor will call your application procedure with the new
location. Your application can either move the frame by calling
MoveStackImage or not do so, depending on whatever it determines is
appropriate.

Event-Driven Code

While it is possible to write your application in a serial manner using
TEGL Windows by polling the keyboard to see if a key has been pressed, or
checking the mouse if the mouse has been clicked on an icon or menu, it is
much more efficient to write using Event-Driven programming.

Event-driven programming is a style of building programs that makes for
extremely interactive applications.

An event is simply the automatic calling of one of your application's
procedures that is triggered by an action such as the mouse cursor
overlapping with an icon on the screen. This type of event handling
removes the complex checking of keyboards and mouse devices from the
central program and allows for an almost parallel (multitasking) type of

Programmer's Reference Guide - 22 - TEGL Windows Toolkit

Chapter 2 - TEGL Easy
program to be created.

Your choice in programming will determine whether your program responds to
the user in a sequential mode where one action must be completed before
proceeding to the next, or multiple activities that may be completed at
the user's leisure.

A good example of multiple event handling is a program that simulates a
calculator. Each key of the calculator pad is tied together with a

Mouse Click Area event-handler (ie. a pascal function) that handles that
particular key. With the selection of one of the numeric icon keys, the
supervisor activates the appropriate event-handler which either adds,
multiplies, subtracts, or divides the digits. On completion of the
event-handler's task, the control is returned back to the supervisor to
await for other events. Other event-handlers, such as notepads, will
continue to respond to keyboard or mouse actions along with the activities
on the calculator.

An Event is a powerful concept. Hypertext on the MacIntosh is based on a
similar structure. By associating an event with a word, image, or icon,
you can chain a series of events together. One event may lead to another?

The number of icon/events that can be created is limited only by available
memory .

Attaching your Function to an Event

There are six (6) basic types of events that the TEGLSupervisor
recognizes. The following will provide a brief discussion on event
handling.

{bo Mouse Click Area}

This event occurs whenever the mouse cursor overlaps a defined mouse click
area on the screen. Depending on the activation sense, the supervisor may
call the event-handler only if the left button is clicked (activation
sense set to MsClick), or if the mouse cursor passes over the defined
mouse click area (activation sense set to MsSense). The most common use of
a mouse click area is the association of an icon with an event-handler.

{bo Click and Drag}

This event is associated with the movement of a window. Control is passed
to the Event-handler after a new frame position has been selected. One use
of this type of event processing is the dragging of an icon-frame to the
trash can (like the MacIntosh).

{bo Expand and Shrink}

This event is associated with the sizing of a window. Control is passed to

Programmer's Reference Guide - 23 - TEGL Windows Toolkit

Chapter 2 - TEGL Easy

the Event-handler after a new frame size has been selected. We use this
type of event to re-size a window.

{bo Keyboard Events}

To accommodate systems without a mouse. The Keyboard Event allows you to
tie the keyboard to any normal mouse-click-area event handler.

{bo Timer Ticks}

The PC has an internal timer that interrupts the activities of any running
program 18 times a second. This interruption is transparent to the
operating system and is used mainly to update the system clock.

The TEGL unit uses this timer to provide a flag for the interval of timed
events. An event-handler may be defined to occur at resolutions up to 18
times a second or several hours later.

{bo Ctrl-Break}

The Ctrl-Break event is usually tied with the event-handler QUIT, but,
like any Event, you may write your own to perform a a different task when
a Ctrl-Break event occurs.

Frames

TEGL is a window manager or more correctly a FRAME STACK coordinator. A
frame is any defined region of the screen. By stacking two or more frames
on the screen, the supervisor monitors the location of the frames and
ensures that each frame retains it's own entity.

Once a frame is created, the frame area can be cleared and drawn with any
graphic functions provided by the Turbo Pascal language or any other
graphical functions provided by other library packages. However, the
responsibility of drawing within the window is with the program.

Use the x, vy, x1, yl coordinates provided within the frame record
when drawing to the window.

Menus

The TEGL Menus are actually event-handlers that have been written to
accommodate drop-down menus, menu selections, lists within a frame, etc.

The menus require a list of items and related events to be created. The
list may then be attached to a bar menu using the OutBarOption, which
is simply a frame with multiple horizontal mouse click defines.

When TEGLSupervisor senses the mouse overlapping with one of the bar
menu selections, an internal BarOptionMenu event is called and a

Programmer's Reference Guide - 24 - TEGL Windows Toolkit

Chapter 2 - TEGL Easy

search is made to find the list that is related to the selection. A menu
window is then created and displayed using the list. The menu window is
simply another frame with multiple mouse click defines.

A Minimum TEGL Program

The following demo program, prints out the message g Hello World! to a small
movable window. Note: this one doesn't require the minimum shell that we
described in the Introduction.

{ samc0201.pas }

Uses
dos,
graph,
virtmem,
fastgrph,
TEGLIntr,
TEGLWrt,
TEGLICON,
TEGLGRPH,
TEGLUnit,
TEGLMenu,
TEGLEasy;

BEGIN
EasyTEGL;

PushImage (100,100,200,120);

Shadowbox (100,100,200,120);

setcolor (black);

OutTEGLTextXY (105,105, 'Hello World!"'");

TEGLSupervisor;
END.

Adding Menus (Top Down Design)

A powerful feature in programming with TEGL Windows is the ability to
visually see your application develop. Top down design is a methodology

Programmer's Reference Guide - 25 - TEGL Windows Toolkit

Chapter 2 - TEGL Easy

where the layout and menu designs are created first and the functional

aspect of the program created later. Program stubs are used as place
markers to indicate the required function.

Adding a drop down menu and connecting the event later is a simple
task with TEGL Windows.

{ samc0202.pas }

VAR
oml, om2 : OptionMPtr;

FUNCTION GetMsSense (FS:imagestkptr; Ms: msclickptr) : WORD;
BEGIN
SetMouseSense (fs”.x,£s”.vy);
GetMsSense := 1;
END;
BEGIN
EasyTEGL;
oml := CreateOptionMenu (@Fontl4);
DefineOptions(oml,' Open ',true,NilUnitProc);
DefineOptions (oml, '--',false,NilUnitProc);

DefineOptions (oml,' Quit ',true,Quit);

om2 := CreateOptionMenu (@Fontl14);

DefineOptions (om2, ' Memory ',true, ShowCoordinates);
DefineOptions (om2,' Mouse Sensitivity ', true,GetMsSense);

CreateBarMenu (0, 0, getmaxx) ;
v
v

OutBarOption (' File ',oml);
OutBarOption (' Utility ',om2);
TEGLSupervisor;

END.

The events ShowoneFont and ShowFonts are defined in FONTTest,
ShowCoordinates and ShowButtonStatus are both defined in

Programmer's Reference Guide - 26 - TEGL Windows Toolkit

Chapter 2 - TEGL Easy

DebugUnt, AskMouseSense is defined in SenseMS, and Quit
is defined in TEGLEasy.

ExitOption already exists as a event in the example above.

The rest of the menu selection are all defined to NilUnitProc which
is a program event stub that does nothing.

Adding events as you go along is easy, now that the menu is set up.
Adding your First Event

The following is an event that opens a window and writes a message.

{ samc0203.pas }
FUNCTION InfoOption (FS:imagestkptr; Ms: MsClickPtr) : WORD;

VAR

x,y,x1,y1 : WORD;

IFS : ImageStkPtr;
BEGIN

Hidemouse;

X = 200;

y := 120;

x1l := x+340;

yl := y+100;

PushImage (x,y,x1,vy1);
IFS := StackPtr;

SetColor (White);
ShadowBox (x,vy,x1,y1l);
SetColor (Black) ;
OutTEGLtextxy (x+5,y+5, '"TEGL Windows Toolkit II');
OutTEGLtextxy (x+5, y+5+TEGLCharHeight,
'Jan 1,1990, Program Written by Richard Tom');

ShowMouse;
InfoOption := 1;
END;
Then change the menu declaration line to add InfoOption like so:

DefineOptions (oml, '"Info...',TRUE, InfoOption);

Programmer's Reference Guide - 27 - TEGL Windows Toolkit

Chapter 2 - TEGL Easy

You may notice that the event returns to the TEGLSupervisor leaving
the window on the screen.

We can refined this procedure by adding a while loop to wait for the user
to click on a icon. The CheckforMouseSelect (IFS) will return a
MouseClickPos once the user has selected the OK icon. While we are
changing the event, we might as well add in an expanding and shrinking box
effect.

The new event listing.

{ samc0204.pas }

FUNCTION InfoOption (FS:imagestkptr; Ms: msclickptr) : WORD;
VAR
x,y,x1,y1 : word;
ifs : ImageStkPtr;
ax,ay,axl,ayl : word;
option : word;
BEGIN
HideMouse;
x := 200;
Yy = 120;
x1l := x+340;
yl := y+100;
ax := Ms®.ms.x+tFS*.x;
ay := Ms”.ms.y+FS"*.y;
axl := Ms”".ms.x1+FS".x;
ayl := Ms®".ms.yl+FS".y;

PushImage (x,y,x1,vy1);
IFS := stackptr;

ZipToBox (ax,ay,axl,ayl,x,y,x1,vy1l);

SetColor (White);
ShadowBox (x,y, x1,vy1);

SetColor (Black) ;
OutTEGLtextxy (x+5,y+5, '"TEGL Windows Toolkit II');
OutTEGLtextxy (x+5, y+5+TEGLCharHeight,

'Jan. 1, 1990, Program Written by Richard Tom');

Programmer's Reference Guide - 28 - TEGL Windows Toolkit

Chapter 2 - TEGL Easy

PutPict (x+280,y+75, @ImageOk, Black) ;

DefineMouseClickArea (IFS,280,75,280+35,75+12, TRUE,
NilUnitProc,MSClick);

SetMousePosition (x+290,y+85);

ShowMouse;

WHILE CheckforMouseSelect (IFS)=NIL DO;

HideMouse;
DropStackImage (ifs);
ZipFromBox (ax,ay,axl,ayl,ifs*.x,ifs".y,ifs*.x1,ifs".y1l);
ShowMouse;
InfoOption := 1;
END;
TEGLEasy
ActiveButton Procedure TEGLEASY
Function
Makes a button/frame.
Declaration
ActiveButton(x,y: Word; s : String; P : CallProc);
Remarks
This is for creating a button which is attacted to a
frame that is the same size as the button. P the
event can then have as the first statement
FrameFromIcon to make a dramatic button to frame
transition.
Restrictions

See also

Example

If the ImageStkPtr is required then save the
StackPtr immediately after calling ActiveButton.

ExplodeFromIconHide, CollapseToIconShow.

ActiveButton(l,1,'?',HelpEvent);

Programmer's Reference Guide - 29 - TEGL Windows Toolkit

Chapter 2 - TEGL Easy

ColToX Function

TEGLEASY

Function

Declaration

Remarks

Restrictions

See also

Calculates the X coordinate for a text col.

ColToX (Col Integer) Integer;
This is used to treat the graphics display as if it
were in text mode to make it easy to place a

succession of characters.

The calculation is made using the currently selected
font.
RowToY,

SetTEGLFont, SetEasyFont.

ErrMess Procedure

TEGLEASY

Function
Declaration

Remarks

See also

Example

Display an error message.

ErrMess (x,y Word; s String);

The error message s is displayed in a frame at
coordinates x,y. The frame is sized to the message

and is moved to keep within the confines of the screen.
button in the

The frame is displayed until the 'OK'

lower right corner is clicked.

GetYesNo.

Error (100,100, 'You must enter a file name first');

Programmer's Reference Guide - 30 - TEGL Windows Toolkit

Chapter 2 - TEGL Easy

FitFrame Procedure

TEGLEASY

Function

Declaration

Remarks

See also

Creates coordinates that fit on the physical screen.
FitFrame (VAR x,y,width, height: Word);

X,y are the desired upper left coordinates for a

frame. Width and Height are the desired width

and height in pixels for the frame. If the starting
coordinates would cause the frame to extend beyond the
bounds of the screen then they are decremented until the
frame will fit. If width or height are greater

than their corresponding GetMaxX or GetMaxY then

they are set to the maximum screen size.

The lower right coordinates are returned in width=x1,
and height=yl.

QuickFrame.

FrameFromIcon Procedure TEGLEASY

Function

Declaration

Remarks

Opens a frame in an event that was called from a click
on a icon.

FrameFromIcon (ifs: ImageStkPtr; ms: MsClickPtr;
x,y,x1,yl : Word);

This would be the first statement in an event that is
attached to an icon or button created with active
button.

This procedure will hide the icon then display an
exploding wire box from the icon location to the
coordinates x,y,x1,yl where a frame is opened and
cleared. An OK button is placed in the lower right
corner of the frame and it is attached to
CollapseToIconShow which will close the frame when
it is clicked on.

Programmer's Reference Guide - 31 - TEGL Windows Toolkit

Chapter 2 - TEGL Easy

See also
ActiveButton, ExplodeFromIconHide

FrameText Procedure TEGLEASY

Function
Writes text to a frame using row, column coordinates
simulating text mode.

Declaration

FrameText (ifs : ImageStkPtr; Row,Col : Integer;
s : String);

Remarks
ifs is the frame to write to. Row and Col
are the row and column locations relative to the frame.
That is, row 1, col 1, is the upper left corner of the
frame. Note the coordinates are the reverse of graphics
coordinates where column comes first.

Restrictions
The text display is based upon the current font. Swithing
fonts will cause uneven text.

Example

VAR ifs : ImageStkPtr;
QuickFrame (ifs,100,100,200,50);
FrameText (ifs, 2,2, '"Hello World');

GetMousey Function TEGLEASY
Function

Waits for a mouse click and returns the number.
Declaration

GetMousey (ifs: ImageStkPtr): Word;
Remarks

ifs is the frame where we are waiting for a mouse
click to occur. The mouse click number is returned.

Programmer's Reference Guide - 32 - TEGL Windows Toolkit

Chapter 2 - TEGL Easy

GetYesNo Function TEGLEASY
Function
Gets a yes Oor no response.
Declaration
GetYesNo (x,y: Word; s : String): Boolean;
Remarks
X,y are the coordinates to display the frame. S
is the question to ask, allowing that the only answer
can be Yes or No. The frame has a yes and no button
displayed in the lower right corner.
This function returns TRUE if Yes is clicked and FALSE
if No is clicked.
Example

IF GetYesNo (100,100, 'Do you want to erase the file') THEN

BEGIN
{ -- erase the file }
END
ELSE ; { -- cancel the command }
EasyTEGL Procedure TEGLEASY
Function
Does the necessary startup for the toolkit.
Declaration
EasyTEGL;
Remarks

This procedure should be called at the very start of
your program. It sets up some default values and clears
the screen.

When you have become familiar with the start-up
requirements of the TEGL Windows Toolkit then you can
write your own initialization procedure.

Programmer's Reference Guide - 33 - TEGL Windows Toolkit

Chapter 2 - TEGL Easy

LastCol Function

TEGLEASY

Function

Declaration

Remarks

Restrictions

See also

Returns the last column of a frame as if it were in
text mode.

LastCol (ifs ImageStkPtr): Integer;

The calculation is based upon the currently selected
font.

Does not allow for BGI fonts.

LastRow, ColToX, RowToY.

LastRow Function

TEGLEASY

Function

Declaration

Remarks

Restrictions

See also

Returns the last row of a frame as if it were in text
mode.

LastRow (ifs ImageStkPtr): Integer;

The calculation is based upon the currently selected
font.

Does not allow for BGI fonts.

LastCol, ColToX, RowToY.

OutFrameTextXY Procedure

TEGLEASY

Function

Declaration

Writes text to frame relative coordinates.

Programmer's Reference Guide - 34 - TEGL Windows Toolkit

Chapter 2 - TEGL Easy

OutFrameTextXY (ifs : ImageStkPtr; x,y: Word; s : String);
Remarks

Uses the currently selected font.
Restrictions

Does not work with BGI fonts.
See also

FrameText.

Quit Event TEGLEASY

Function

Halts program.
Declaration

Quit (ifs: ImageStkPtr; ms: MsClickPtr): Word;
Remarks

Control break is set to this event by default in
EasyTEGL.

SetCtrlBreakFS (Quit);

QuickFrame Procedure TEGLEASY
Function
Pushes an image and clears the frame.
Declaration
QuickFrame (VAR ifs : ImageStkPtr; x,y,width,
height: Word);
Remarks

X,y are the desired upper left coordinates, width
and height are the size of the frame. Coordinates
are adjusted to fit the physical screen.

After calling QuickFrame the fields x,vy,x1,yl
of the ImageStkPtr can be examined to determine the
actual frame coordinates.
See also
FitFrame.

Programmer's Reference Guide - 35 - TEGL Windows Toolkit

Example

Chapter 2 - TEGL Easy

VAR ifs : ImageStkPtr;

QuickFrame (ifs,100,100,200,150);
FrameText (2,2, 'This is too TEGL easy!');

RestoreFont Procedure TEGLEASY
Function
Restores the current font.
Declaration
RestoreFont;
Remarks

The current font is saved when SelectEasyFont is
called.

RowToY Function

TEGLEASY

Function

Declaration

Remarks

Restrictions

See also

Calculates the Y coordinate for a text row.

RowToY (Row : Integer): Integer;

This is used to treat the graphics display as if it were
in text mode and make it easier to place succeeding rows
of text on the screen.

The calculation is based on the current font.

ColToX, LastCol, LastRow, FrameText

Programmer's Reference Guide - 36 - TEGL Windows Toolkit

Chapter 2 - TEGL Easy

SelectEasyFont Procedure TEGLEASY
Function
Changes the font.
Declaration
SelectEasyFont;
Remarks

See also

The font used after this call is selected by previous
call to SetEasyFont.

RestoreFont.

SetEasyFont Procedure TEGLEASY

Function
Declaration

Remarks

See also

Example

Set the font used by the TEGLEasy Unit.
SetEasyFont (p : Pointer);

Some of the routines in TEGLEasy write to the screen.
This font is used by these routines.

SelectEasyFont, RestoreFont

SetEasyFont (€@CountDwn) ;

Programmer's Reference Guide - 37 - TEGL Windows Toolkit

Chapter 3 - Icons

ICONS

Icons are pictures that represent objects. This Icon image diskdrve
represents a diskette.

Icons are the mainstay of GUI's.

The TEGL

Windows Toolkit provides the tools that can create and manipulate icons up
to a 100 x 100 pixels in size. By placing an icon within a window frame,
they may be attached directly to an TEGL event to provide graphical menu
selections, animated to provide visual feedback, displayed as graphic
images like the TEGL Deck of Cards, or used to display a company logo.

The ICON Editor

Included in TEGL Windows is a powerful icon editor that utilizes the full
power of the tookit to provide you with fast, flexible and easy icon file
editing. The source code for the icon editor is also included so you can
expand and modify it to suit your needs.

The Main Bar Menu
Open ICONDEF File

Opens an existing ICON.DEF file, or creates a new DEF file. To create a new
DEF file, type in the name of the DEF file in the filename box and click on
key OK.

Quit
Quits the icon editor. NOTE: The icon editor does not prompt you to save your
files.

Editing

The mouse cursor changes to cross-hairs when the cursor enters the

icon drawing area. Pressing the mouse left button will place a pixel at
the current coordinates. Pressing the mouse right button will erase the pixel.
You can hold the mouse left or right button, while moving the mouse to
draw or erase a series of pixels.

The drawing bar at the bottom of the drawing area has two functions. Press
and hold the right mouse button on the drawing bar to drag the drawing
area to a new location. Click with the left mouse button on the drawing
bar to select from the drawing menu.

The Drawing Bar Menu

SAVE

Saves the file with the filename displayed on the drawing bar.

Programmer's Reference Guide - 38 - TEGL Windows Toolkit

Chapter 3 - Icons

SAVE AS
Saves the file with a new filename.

SAVE AND EXIT ICON FILE
Saves the file with the filename displayed on the drawing bar and closes
the editing area for the file.

CREATE PASCAL CONSTANTS
Creates a pascal constants file with the extension g .CON for including
in a program.

COPY IMAGE AREA

Copies an area into the internal IMAGE AREA. When this option is active a
scissors icon appears on the drawing bar. Click once with the left mouse
button to mark the upper left corner of the area to copy. Move the mouse
cursor to the bottom right corner of the area to copy and click again on
the left mouse button. When the scissors disappear, the area has been
copied to the internal IMAGE AREA.

CUT IMAGE AREA

Copies an area into an internal IMAGE AREA and clears the Icon area to the
background color. When this option is active a scissors icon appears on
the drawing bar. Click once with the left mouse button to mark the upper
left corner of the area to cut. Move the mouse cursor to the bottom right
corner of the area and click again on the left mouse button. When both
the scissors disappear and the area is cleared, then the area has been
copied to the internal IMAGE AREA.

FILL IMAGE AREA

Fills an area with the current pixel color. Bits that are already set on
are not overwritten. When this option is active, a coffee mug icon appears
on the drawing bar. Click once with the left mouse button to mark the
upper left corner of the area to fill. Move the mouse cursor to the
bottom right corner of the area and click again on the left mouse button.
The coffee mug disappears when the area is filled with current pixel
color.

PASTE IMAGE AREA

Paste the copied/cut area from the internal IMAGE AREA to the icon drawing
area. When this option is active, a glue bottle icon appears on the
drawing bar. Click once at the position where the image is to be pasted.
The pasted image overwrites any pixels on the drawing area.

MERGE IMAGE AREA

Merges the copied/cut area from the internal IMAGE AREA to the icon
drawing area. When this option is active, a glue bottle icon appears on

Programmer's Reference Guide - 39 - TEGL Windows Toolkit

Chapter 3 - Icons

the drawing bar. Click once at the position where the image is to
be merged. The merged image only writes to empty pixel areas.

OVERLAY IMAGE AREA

Overlays the copied/cut area from the internal IMAGE AREA to the icon
drawing area. When this option is active, a glue bottle icon appears on
the drawing bar. Click once at the position where the image is to

be overlayed. The overlay image only writes to active pixels.

ROTATE IMAGE AREA 45 DEGREES

Rotates the internal IMAGE AREA by 45 degrees.

ROTATE IMAGE AREA 90 DEGREES

Rotates the internal IMAGE AREA by 90 degrees.

REDUCE IMAGE AREA

Shrinks the image within the internal IMAGE AREA by 50%. The algorithm
deletes every second pixel.

REVERSE IMAGE AREA

Reverses the image within the internal IMAGE AREA from left to right.
PIXEL COLOR

Pick the current pixel color from a palette of 16 colors.

BACKGROUND COLOR

Pick the current background color from a palette of 16 colors.

CHANGE PIXELS COLOR

Change all pixels with color m to another color n. Where m

and n are selected from a palette of 16 colors. To cancel the command
without changing any pixel colors, select the same color for both m
and n.

ERASE COLOR PIXELS

Erases all pixels with the selected pixel color. The color is selected
from a palette of 16 colors.

EXPLODE ICON IMAGE
Enlarges the drawing area. The largest size is a ratio of 3 to 1 (3 pixels
representing 1 pixel).

IMPLODE ICON IMAGE

Programmer's Reference Guide - 40 - TEGL Windows Toolkit

Chapter 3 - Icons
Shrinks the drawing area.

CLEAR ICON IMAGE
Clears the drawing area.

RELOAD ICON FILE
Reloads the original icon file.

EXIT ICON FILE
Finishes the editing of a icon file.

You can open as many editing windows at once as you like. The internal
IMAGE AREA is common to all the edit windows that are open. Consequently,
whatever is in the internal IMAGE AREA can be pasted to any edit window.
This allows for the building of icons from small pieces, or copying an
icon to transform it to something different.

ICON Constants

Select from the Drawing Bar Menu CREATE PASCAL CONSTANTS, to generate
constants for including in your program. If you have a large number of
icons for generating constants, you can use the program ICONINC to
generate all icons in a one pass.

Putpict Procedure FASTGRPH

Function

Puts the defined icon to the specified screen area.

Declaration

Putpict (x,y:word; buf:pointer;n:word)

Remarks

x, y defines the upper left corner of the screen area for placing the
icon image.

buf points to the defined icon image.

n defines the color change for any pixel that is black within the
icon.

Example

const
ImageMYICON : array [0..1566] of byte =
($1D, $06, $83,501,$5B, $02,$

Programmer's Reference Guide - 41 - TEGL Windows Toolkit

Chapter 3 - Icons

PutPict (10,25, @ImageMYICON, black);

ICON Assembler Procedures

A drawback of Turbo Pascal is the size of the data area, which limits the
number of icons that can be included as constants.

The program ICONASM provides a second method that allows you to add
large icon images to your program (eg. the TEGL Deck of Cards).

ICONASM generates a Pascal procedure in assembler. Turbo Assembler is
required to assemble the file to object code. You may then create a TPU
that will link the icon procedure into your pascal program.

procedure ImageMyICON(x,y:word;n:word);
{SL MyIcon.obj}

To display the icon, use the icon procedure name (your icon name prefixed
with Image).

imageMyIcon (10,25,black);

Note that these procedures must always be declared as far calls. If you
make them part of the interface of a unit then it is done automatically
but if you are using any directly in your program or accessing them
locally in a unit then be sure and use the {$F+} directive.

ICON Utilities
ICONDEF

ICONDEF is a utility program that allows you to strip the .DEF files
from a turbo pascal source file, include file or Assembler file, provided
that the commented {.. prefix is still a part of your constants.

Be careful that the Input filename is not the same as one of the
definition files. Using a suffix other then .DEF will ensure that the
include file is not overwritten while extracting. However, any filenames
that do end in .DEF should be copied to a subdirectory if you are not sure
about the ICON definition names.

Programmer's Reference Guide - 42 - TEGL Windows Toolkit

Chapter 3 - Icons

Syntax: ICONDEF MYFILE.INC

Where: MYFILE.INC is the include file generated by ICONINC
or any file that embeds the include file.

ICONLIB

ICONLIB is for assisting the programmer in combining the definition
files into a single library file for maintenance. Use ICONDEF to extract.

Syntax: ICONLIB *[.DEF] MYPROG.DLB

Where: *[.DEF] may use any DOS wild-card specifications.
MYPROG.DLB may be any library filename.

ICONINC

ICONINC helps the ICON Editor in generating a large number of Turbo
Pascal ICON constants. Multiple icon definitions may be output to a single
include file.

Syntax: ICONDEF *[.DEF] MYFILE.INC

Where: *[.DEF] may use any DOS wildcards specifications.
MYFILE.INC may be any include filename.

ICONASM
ICONASM is for assisting the ICON Editor in generating procedures

from icon definition files. Multiple procedures may be output to a single
asm file.

Syntax: ICONASM *[.DEF] MYPROG.ASM

Where: *[.DEF] may use any DOS wildcards specifications.
MYPROG.ASM may be any assembler filename.

Programmer's Reference Guide - 43 - TEGL Windows Toolkit

Chapter 3 - Icons

ICONS in TEGLIcon Unit

There are a number of icons that have been created and are available in
TEGLIcon unit. You can use these icons by simply including the unit

in your USES statement.

ImageCREDITS

TEGL Windows Toolkit II

ImageTRASH

A trash can
ImageOK

OK button
ImageCANCEL

Cancel button
ImageBLANKBUT

A blank button for creating your own
ImagelBUT ImageMBUT ImageRBUT
Used by DrawLongButon to create an extra long button

icon.
ImageDOWN

Down arrow.
ImageUP

Up arrow.
ImageRIGHT

Right arrow.
ImagelEFT

Left arrow.
ImageR

Registered Trademark. reg
ImageC

Copyright. copyright
ImageTIGER

A TEGL tiger.
ImagelAST

Last button.
ImageNEXT

Next button.
ImageQUESTION

Question Button.

Programmer's Reference Guide - 44 - TEGL Windows Toolkit

Chapter 4 - Frames

Frames

The power and speed of TEGL Windows is most apparent when handling frames.
By automatically saving and restoring overlapping images, TEGL Windows

is a very powerful tool for creating the illusion of separate multiple
windows.

Creating, Manipulating, and Dropping Frames

CountFrames Function TEGLUNIT
Function
Returns the number of frames currently on the
stack.
Declaration
CountFrames: Word;
FrameExist Function TEGLUNIT
Function
Determines i1f a frame is on the frame stack.
Declaration
FrameExist (ifs : ImageStkPtr): Boolean
Remarks
If ifs exists then it contains the address
of one of the frames on the stack.
Example

IF FrameExist (ifs) THEN
DropStackImage (ifs);

Programmer's Reference Guide - 45 - TEGL Windows Toolkit

Chapter 4 - Frames

PushImage Procedure TEGLUNIT

Function
Used to save the background image before clearing and
drawing new images in this area. Equivalent to opening
a window area.

Declaration
PushImage (X,Y,X1,Yl : word)

Remarks
Windows are created by pushing and popping the
background image. X, Y, X1, Y1 are absolute
coordinates starting with 0,0 at the upper left corner
of the screen to GetMaxX, GetMaxY at the lower right
corner.

Restrictions

Saving large images can require a lot of memory even
with the Virtual Memory Manager. If a program is
expected to use most of memory it would be sensible to
include specific checks on memory requirements and
availability before performing a PushImage.

A full screen in EGA mode (640 x 350) requires about
110K of memory, in VGA mode (640 x 480) the requiment
is about 150K.

See also
PopImage, DropStackImage, RotateStackImage,
RotateUnderStackImage

Example
The following will create a shadowed box on the upper
left screen area. Use the right mouse button to drag
the box around.

{ samc0401.pas }
PushImage(1,1,100,100);
ShadowBox (1,1,100,100);

PopImage Procedure TEGLUNIT

Programmer's Reference Guide - 46 - TEGL Windows Toolkit

Chapter 4 - Frames

Function

Declaration

Remarks

See also

Example

{ samc0402.pas }

Used to restore the top background image after a
PushImage. Equivalent to closing a window area.

PopImage

Restores the uppermost image area created by PushImage.
PushImage, DropStackImage, RotateStackImage,
RotateUnderStackImage

This example waits until a mouse button is pressed then
calls PopImage to restore the background image.

PushImage(1,1,100,100);
ShadowBox (1,1,100,100);

WHILE Mouse_Buttons = 0 DO;

PopImage;

RotateStackImage Procedure TEGLUNIT

Function
Rotates a frame forward or backward relative to the
frames on the screen.

Declaration
RotateStackImage (var Framel,Frame2)

Remarks

Frames may be rotated to the foreground to allow user
input or updates, etc.

A frame may be rotated as the first frame using
RotateUnderStackImage.

In order to access an image that is not the most recent
PushImage you must save the Global Variable
StackPtr right after the PushImage. The saved

Programmer's Reference Guide - 47 - TEGL Windows Toolkit

Restrictions

See also

Example

{ samc0403.pas }

Chapter 4 - Frames
pointer may be used to manipulate the frame.
A frame can only be rotated above a known frame. To
rotate a frame below another frame on the stack, use
the RotateUnderStackImage routine.
PushImage, PoplImage, DropStackImage
The following example creates two overlapping frames

and waits for a click of a mouse button before
rotating the bottom frame to the top.

VAR fs : ImageStkPtr;

PushImage(1,1,100,100);
ShadowBox (1,1,100,100);

FS := stackptr;

PushImage (50, 50,150,150);
ShadowBox (50,50,150,150);

WHILE Mouse_Buttons = 0 DO;

RotateStackImage (fs, stackptr);

RotateUnderStackImage Procedure TEGLUNIT

Function

Declaration

Remarks

Restrictions

Rotates a frame forward or backward relative to the
frames on the screen. Rotates a frame below Frame?2.

RotateUnderStackImage (VAR Framel,Frame?2)

In order to access an image that is not the most recent
PushImage you must save the Global Variable

StackPtr right after the PushImage. The saved

pointer may be used to manipulate the frame.

A frame can only be rotated below a known frame. To
rotate a frame above another frame on the stack, use
the RotateStackImage.

Programmer's Reference Guide - 48 - TEGL Windows Toolkit

See also

Example

{ samc0404.pas }

Chapter 4 - Frames

PushImage, PoplImage, DropStackImage

The following example creates two overlapping frames
and awaits for a click of a mouse button before
rotating the Top frame under the second frame.

VAR FS : ImageStkPtr;

PushImage(1,1,100,100);
ShadowBox (1,1,100,100);

FS := StackPtr;

PushImage (50, 50,150,150);
ShadowBox (50, 50,150,150);

WHILE Mouse_Buttons = 0 DO;

RotateUnderStackImage (StackPtr, £s);

DropStackImage Procedure TEGLUNIT

Function

Declaration

Remarks

See also

Example

Used to close a frame that is not necessarily the
topmost image on the stack. Equivalent to closing a
window area.

DropStackImage (VAR Frame: ImageStkPtr)

Restores an image area created by PushImage.

In order to access an image that is not the most recent
PushImage you must save the Global Variable

StackPtr right after the PushImage. The saved

pointer may be used to manipulate the frame.

PushImage, PoplImage, RotateStackImage,
RotateUnderStackImage

The following example creates two overlapping frames
and awaits for a click of a mouse button before

Programmer's Reference Guide - 49 - TEGL Windows Toolkit

Chapter 4 - Frames
dropping the bottom frame from the screen.
{ samc0405.pas }
VAR fs : ImageStkPtr;
PushImage(1,1,100,100);
ShadowBox (1,1,100,100);
fs := StackPtr;

PushImage (50, 50,150,150);
ShadowBox (50,50,150,150);

WHILE Mouse_Buttons = 0 DO;

DropStackImage (fs);

HideImage Procedure TEGLUNIT

Function
Hides an Image Frame from the screen but retains the
current stack position and frontal image.
Declaration
HideImage (VAR Frame)
Remarks
This procedure may be used in a variety of ways.
Blinking a frame by alternating between HideImage and
ShowImage. Moving a frame from one location to another.
See also
ShowImage
Example
The following example blinks a frame continuously until
a mouse button is pressed.

{ samc0406.pas }
VAR fs : ImageStkPtr;
i : word;

PushImage(1l,1,50,50);
ShadowBox (1,1, 50,50);
fs := StackPtr;

Programmer's Reference Guide - 50 - TEGL Windows Toolkit

Chapter 4 - Frames

i := 20000;
REPEAT
dec (1) ;

IF i=10000 THEN
HideImage (fs);
IF i=0 then

BEGIN
ShowImage (fs, fs*.x,fs*.vy);
i := 20000;

END;

UNTIL Mouse_Buttons<>0;

IF 1<=10000 THEN
ShowImage (fs, £fs*.x, fs

A

.Y

ShowImage Procedure TEGLUNIT

Function

Shows a Hidden Image Frame.
Declaration

HideImage (VAR Frame)
See also

HideImage

Example
The following example moves a frame from one location
to another when a mouse button is pressed.

{ samc0407.pas }

VAR fs : ImageStkPtr;
PushImage(1,1,100,100);
ShadowBox (1,1,100,100);
fs := StackPtr;

PushImage (50, 50,150,150);
ShadowBox (50,50,150,150);

WHILE Mouse_Buttons = 0 DO;

HideImage (fs);

Programmer's Reference Guide - 51 - TEGL Windows Toolkit

Chapter 4 - Frames

ShowImage (fs, £s*.x+100, £s*.y+100) ;

ShowCoordinates Event DEBUGUNT
Function

A TEGL Event that displays the coordinates of a frame.
Declaration

ShowCoordinates (ifs : ImageStkPtr; Ms : MsClickPtr): Word;
Remarks

This event displays the coordinates of a frame.

Preparing a Frame for Update

PrepareForPartialUpdate Procedure TEGLUNIT

Function
Prepares a portion of a frame for output. Removes all
overlapping images above the partial area that is being
updated on the screen.

Declaration
PrepareForPartialUpdate (VAR Frame; X,Y,X1,
Y1l: word)

Remarks
X,Y,X1,Yl are absolute coordinates starting with 0,0 at
the upper left corner of the screen to GetMaxX, GetMaxY
at the lower right corner.

Restrictions

The coordinates must be within the absolute frame
coordinates. Use the current Frame coordinates +
offsets to obtain the correct absolute coordinates.

PrepareForPartialUpdate and PrepareForUpdate can
be used on multiple frames (provided the update areas
do not overlap) but must be matched by an equal number
of calls to CommitUpdate.

See also

Programmer's Reference Guide - 52 - TEGL Windows Toolkit

Chapter 4 - Frames

PrepareForUpdate, CommitUpdate

Example
The following example creates two overlapping frames
and awaits for a click of a mouse button before drawing
a circle on the bottom frame.

{ samc0408.pas }
VAR FS,LsPtr : ImageStkPtr;

PushImage(1,1,100,100);
ShadowBox (1,1,100,100);
fs := StackPtr;

PushImage (50, 50,150,150);
ShadowBox (50,50,150,150);

WHILE Mouse_Buttons = 0 DO;
PrepareForPartialUpdate (fs, fs*.x, fs".y,fs".x1,fs".y1l);

SetColor (Blue);
Circle(fs”.x+48,fs*.y+45,40);

CommitUpdate;
PrepareForUpdate Function TEGLUNIT
Function
Prepares a frame for output. Removes all overlapping
images above the frame area that is being updated on
the screen.
Declaration
PrepareForUpdate (VAR Frame)
Remarks
Identical to PrepareForPartialUpdate, except the
current Frame Coordinates are passed automatically.
Restrictions

PrepareForPartialUpdate and PrepareForUpdate can
be used on multiple frames (provided the update areas
do not overlap) but must be matched by an equal number
of calls to CommitUpdate.

See also
PrepareforPartialUpdate, CommitUpdate

Example

Programmer's Reference Guide - 53 - TEGL Windows Toolkit

{ samc0409.pas }

Chapter 4 - Frames

The following example creates two overlapping frames
and awaits for a click of a mouse button before drawing
a circle on the bottom frame.

VAR fs : ImageStkPtr;

PushImage(1,1,100,100);
ShadowBox (1,1,100,100);
fs := StackPtr;

PushImage (50, 50,150,150);
ShadowBox (50,50,150,150);

WHILE Mouse_Buttons = 0 DO;

PrepareForUpdate (fs);
SetColor (blue);
Circle(fs”.x+48,fs*.y+45,40);
CommitUpdate;

CommitUpdate Procedure TEGLUNIT

Function

Declaration

Remarks

Restrictions

See also

Example

Commits update. Replaces all overlapping images above
the frame area that was being updated on the screen.

CommitUpdate;

CommitUpdate must be used to close the functions
PrepareForPartialUpdate and PrepareForUpdate.

CommitUpdate must be called an equal number of
times for each PrepareForPartialUpdate and
PrepareForUpdate.

PrepareForPartialUpdate, PrepareForUpdate
The following example creates two overlapping frames

and awaits for a click of a mouse button before drawing
a circle on the bottom frame.

Programmer's Reference Guide - 54 - TEGL Windows Toolkit

Chapter 4 - Frames

{samc0410.pas }
VAR FS : ImageStkPtr;

PushImage(1,1,100,100);
ShadowBox (1,1,100,100);
fs := StackPtr;

PushImage (50, 50,150,150);
ShadowBox (50, 50,150,150);

WHILE Mouse_Buttons = 0 DO;
PrepareForUpdate (fs);
SetColor (blue);

Circle (fs”.x+48, fs".y+45,40);
CommitUpdate;

Moving a Frame

FrameSelectAndMove Function

TEGLUNIT

Function
Allows a frame to be moved. This routine is normally
called by the TEGL supervisor when the right mouse
button is held down and the mouse cursor is positioned
over a frame.

Declaration

FrameSelectAndMove (mxpos,mypos : word) :

Result type

ImageStkPtr;

Returns a pointer to the frame that the mouse had

selected and moved.

Remarks
The movement of the Frame i1s under the control of the
user until the mouse button is released. To move a
frame under program control, use MoveStackImage.
Restrictions

This function returns immediately i1if neither mouse

button is held down on entry.

See also
SetMoveRestrictions, SetFrameMobility,

Programmer's Reference Guide - 55 - TEGL Windows Toolkit

Chapter 4 - Frames

SetMoveFrameCallProc, MoveStackImage

Example
The following example displays a green mouse cursor and
calls FrameSelectAndMove whenever the right mouse
button is pressed. The routine exits and changes the
mouse cursor back to white when the left mouse button

is pressed.

VAR FS : ImageStkPtr;

PushImage(1,1,100,100);
ShadowBox (1,1,100,100);
fs := StackPtr;

ShowMouse;
SetMouseColor (green) ;
REPEAT
IF Mouse_Buttons=2 THEN
fs := FrameSelectAndMove (Mouse_Xcoord,Mouse_Ycoord) ;
UNTIL Mouse_Buttons = 1;
SetMouseColor (white);

SetAutoRotate Procedure TEGLUNIT

Function
Sets the frame stack auto rotate function.

Declaration
SetAutoRotate (OnOff: Boolean);

Remarks
Auto rotate is normally set to FALSE. That is, a frame
will not automatically rotate to the top of the stack.
When set to TRUE any frame that is partially covered
will be moved to the top of the stack when
TEGLSupervisor detects a left mouse button click
anywhere on the frame.

Example

{ -- after this frames jump to the top with a click of the mouse }

SetAutoRotate (TRUE) ;

Programmer's Reference Guide - 56 - TEGL Windows Toolkit

Chapter 4 - Frames

SetMoveRestrictions Procedure TEGLUNIT

Function

Declaration

Remarks

Restrictions

See also

Example

Sets the minimum and maximum coordinates that a frame
may be moved.

SetMoveRestrictions (sh VAR frame; x,y,x1,yl:
word)

Sets the area that a frame is restricted to when
FrameSelectAndMove is called.

The restriction does not apply when a frame is moved
using MoveStackImage.

FrameSelectAndMove, SetFrameMobility,
SetMoveFrameCallProc, MoveStackImage

The following sets the frame mobility to the upper half
of the screen. Use the right mouse button to move the
frame around.

PushImage(1,1,100,100);
ShadowBox (1,1,100,100);
SetMoveRestrictions (StackPtr, 0, 0, GetmaxX, GetmaxY div 2);

SetFrameMobility Procedure TEGLUNIT

Function

Declaration

Remarks

Toggles the ability for a frame to move.

SetFrameMobility (sh VAR frame; movable:
boolean)

Programmer's Reference Guide - 57 - TEGL Windows Toolkit

Restrictions

See also

Example

Chapter 4 - Frames
When the mobility of a frame is set to off (false), the
frame outline will move when FrameSelectAndMove is
called, however, the frame is not moved to the new
location when the mouse button is released.

The default frame mobility is ON (true).

The mobility toggle has no effect when a frame is moved
using MoveStackImage.

FrameSelectAndMove, SetMoveRestrictions,
SetMoveFrameCallProc, MoveStackImage

The following example toggles a frames mobility to off.

PushImage(1,1,100,100);
ShadowBox (1,1,100,100);
SetFrameMobility (StackPtr, false);

SetMoveFrameCallProc Procedure TEGLUNIT

Function

Declaration

Remarks

Restrictions

See also

An event process that is called after an frame has been
dragged to a new screen position.

SetMoveFrameCallProc (sh VAR frame : ImageStkPtr;
P : CallProc);

Can be used for the trash can effect, originating with
the MacIntosh, by which file icons are dragged to the
trash can to be deleted from the system.

The event may check the MouseClickPos Record (fields
MS.X, MS.Y, MS.X1l, and MS.Yl) for the new frame
location and whether they overlap the desired frame.

If you wish for the frame to move to the new location,
the event must call MoveStackImage before returning.

FrameSelectAndMove, SetMoveRestrictions,
SetFrameMobility, MoveStackImage

Programmer's Reference Guide - 58 - TEGL Windows Toolkit

Chapter 4 - Frames

Example

The following is a very simple Event Handler that
simply closes the frame if the frame is moved.

Function Poof (Frame:ImageStkPtr; MouseClickPos : MsClickPtr) : Word;
BEGIN
HideMouse;
DropStackImage (frame) ;
ShowMouse;
Poof := 0;
END;

PushImage(1,1,100,100);
ShadowBox (1,1,100,100);
SetMoveFrameCallProc (StackPtr, Poof);

MoveStackImage Procedure TEGLUNIT
Function
Move a frame to a new screen location.
Declaration
MoveStackImage (sh VAR Frame; x,y : word)
Remarks
Used to move a frame under Program control to a new
screen location. X and Y are absolute coordinates that
specify the upper left corner of the frame at the new
location.
Restrictions

The coordinates are not validated, so care must be
taken to ensure that the resulting coordinates of the
lower right corner falls within the screen area.

See also
FrameSelectAndMove, SetMoveRestrictions,
SetFrameMobility, SetFrameCallProc

Example
The following example moves a smaller frame under
another larger frame to demonstrate the integrity of
stacked images.

VAR fs : ImageStkPtr;
i : word;

Programmer's Reference Guide - 59 - TEGL Windows Toolkit

Chapter 4 - Frames

PushImage(1l,1,20,20);
ShadowBox (1,1,20,20);
fs := StackPtr;

PushImage (50, 50,150,150);
ShadowBox (50,50,150,150);

FOR i:=1 to 100 DO
MoveStackImage (fs, fs”.x+2,fs”.y+2);

MoveFrame Procedure TEGLUNIT
Function
Moves an Xor wire frame from one location to
another.
Declaration
MoveFrame (VAR fx, fy,fx1,fyl : Integer;
rx,ry,rxl,ryl: Integer; Color: Integer);
Remarks
This only moves a wire frame not the actual frame.
The mouse button must be held down on entry or this
function returns immediately. rx,ry,rxl,ryl are
the starting coordinates. fx, fy,fx1l,fyl are the
coordinates when the mouse button is released.
Color is the wireframe color.
Low Level Frame Functions
UnLinkFS Procedure TEGLUNIT

Function

Disconnects a frame from the stack.
Declaration

UnLinkFS (sh VAR Frame)
Remarks

Programmer's Reference Guide - 60 - TEGL Windows Toolkit

Restrictions

See also

Example

Chapter 4 - Frames

UnLinkFS allows you to disconnect a frame from the
Image stack to stop any further actions by the frame
manager.

This procedure is used throughout the window management
routines. It is provided as an external routine only
for specialized needs.

This procedure should be used in conjunction with
HideImage, ShowImage, CreatelmageBuffer,
DropImageBuffer, and LinkFS.

If you unlink a frame from the stack without first
hiding the frame, the stack manager will not
acknowledge the existence of the frame and will
overwrite the unlinked frame area.

LinkFS, LinkUnderFsS

The following example hides the frame before unlinking
and dropping the image.

VAR FS : ImageStkPtr;

PushImage(1,1,100,100);
ShadowBox (1,1,100,100);

fs := StackPtr;

PushImage (50, 50,150,150);
ShadowBox (50,50,150,150);

WHILE Mouse_Buttons = 0 DO;

HideImage (fs);
UnLinkFS (fs);

DropImageBuffer (fs);

LinkFS Procedure

TEGLUNIT

Function

Reconnects a frame to the stack.

Programmer's Reference Guide - 61 - TEGL Windows Toolkit

Declaration

Remarks

Restrictions

See also

Example

Chapter 4 - Frames

LinkFS (sh VAR Framel,Frame?2)

LinkFS reconnects Framel with the Frame stack, above
FrameZ2.

This procedure is used throughout the window management
routines. It is provided as an external routine only
for specialized needs.

This procedure should be used in conjunction with
HideImage, ShowImage, CreatelmageBuffer,
DropImageBuffer, and UnLinkFS.

UnLinkFS, LinkUnderFS

The following example performs the same function as
RotateStackImage.

VAR FS : ImageStkPtr;

PushImage(1,1,100,100);
ShadowBox (1,1,100,100);

fs := StackPtr;

PushImage (50, 50,150,150);
ShadowBox (50, 50,150,150);

WHILE Mouse_Buttons = 0 DO;

HideImage (fs);
UnLinkFS (fs);

LinkFS (fs, StackPtr);
ShowImage (fs, fs*.x,fs*.vy);

LinkUnderFS Procedure TEGLUNIT

Function

Declaration

Reconnects a frame with the frame stack, below the
specified frame.

Programmer's Reference Guide - 62 - TEGL Windows Toolkit

Remarks

Restrictions

See also
UnLinkFS, LinkFS
Example

Chapter 4 - Frames
LinkUnderFS (sh VAR Framel,Frame?2)
LinkUnderFS reconnects Framel below Frame?2.
This procedure is used throughout the window management
routines. It is provided as an external routine only
for specialized needs.
This procedure should be used in conjunction with

HideImage, ShowImage, CreatelmageBuffer,
DropImageBuffer, and UnLinkFS.

The following example performs the same function as
RotateUnderStackImage.

VAR fsl,fs2 : ImageStkPtr;

PushImage(1,1,100,100);
ShadowBox (1,1,100,100);

fsl := StackPtr;

PushImage (50, 50,150,150);
ShadowBox (50,50,150,150);

fs2 := StackPtr;

WHILE Mouse_Buttons = 0 DO;

HideImage (fs2);

UnLinkFS (fs2);

LinkUnderFS (£s2, £s1);
ShowImage (fs2, £s2”.x,£s2".vy);

CreateImageBuffer Procedure TEGLUNIT

Function

Declaration

Remarks

Allocates an Image buffer (frame) on the Heap.

CreateImageBuffer (VAR Frame; x,y,x1l,yl:word)

Programmer's Reference Guide - 63 - TEGL Windows Toolkit

Restrictions

See also

Example

Chapter 4 - Frames

This procedure is used throughout the window management
routines. It is provided as an external routine only
for specialized needs.

This procedure should be used in conjunction with
HideImage, ShowImage, CreatelmageBuffer,
DropImageBuffer, and UnLinkFS.

DropImageBuffer

The following example performs the same function as
PushImage.

VAR FS : ImageStkPtr;

CreateImageBuffer(fs,1,1,100,100);
LinkFs (fs, StackPtr);
GetBiti(1,1,100,100, £fs”.imagesave);

ShadowBox (1,1,100,100);

DropImageBuffer Procedure TEGLUNIT
Function
Frees the memory used by the frame on the heap.
Declaration
DropImageBuffer (VAR Frame)
Remarks
This procedure is used throughout the window management
routines. It is provided as an external routine only
for specialized needs.
Restrictions

See also

Example

This procedure should be used in conjunction with
HideImage, ShowImage, CreatelmageBuffer,
DropImageBuffer, and UnLinkFS.

CreateImageBuffer

The following example performs the same function as
PopImage.

Programmer's Reference Guide - 64 - TEGL Windows Toolkit

Chapter 4 - Frames
VAR FS : ImageStkPtr;
PushImage(1,1,100,100);
ShadowBox (1,1,100,100);
fs := StackPtr;
WHILE Mouse_Buttons = 0 DO;

UnlinkFS (fs);
DropImageBuffer (fs);

GetFSImage Function TEGLUNIT

Function
Retrieves the screen image within a stacked frame.
Declaration
GetFSImage (Frame)
Result type
Returns a (non-stacked) frame containing the screen
image and other related frame information.
Remarks
The (non-stacked) frame may be used for replication or
it can be merged with other frames.
See also
PutFSImage
Example
The following example creates a single frame and
replicates the frame.

VAR FS,TS : ImageStkPtr;

PushImage(1,1,100,100);
ShadowBox (1,1,100,100);
fs := StackPtr;

ts := GetFSImage (fs);
PushImage (51,51,150,150);
PutFSImage (51,51, ts, FGNORM) ;
DropImageBuffer(ts);

Programmer's Reference Guide - 65 - TEGL Windows Toolkit

Chapter 4 - Frames

PutFSImage Procedure TEGLUNIT
Function
Places the frame saved image anywhere on the screen.
Declaration
PutFSImage (x,y,Frame, RWBITS)
Remarks
RWBITS are constants defined in EGAGRAPH which
defines how the images are placed on the screen.
FGNorn
replaces screen area with frame image
FGAnd
AND's screen area with frame image. Toggles off screen
areas that do no have a frame image. Creates an outline
of the frame image.
FGOr
OR's screen area with frame image. Toggles on empty
screen areas that have a frame image. Creates a solid
frame image.
FGXor
XOR's screen area with frame image.
FGNot

Inverts frame image and replaces screen area with
image.

See also

GetFSImage

Example
The following example creates a single frame and
replicates the frame.

VAR fs,ts : ImageStkPtr;
i : word;
PushImage(1,1,100,100);
ShadowBox (1,1,100,100);
fs := StackPtr;
ts := GetFSImage (fs);

FOR i:=1 to 20 DO

Programmer's Reference Guide - 66 - TEGL Windows Toolkit

BEGIN

Chapter 4 - Frames

PushImage (1+i*10,1+i*10,100+1*10,100+1*10);
PutFSImage (1+i*10,1+i*10,ts, FGNOT) ;

END;

DropImageBuffer (ts);

FreeImageBuffer Procedure

Function

Declaration

Remarks

Frees up the memory allocated for a frame buffer.

FreeImageBuffer (VAR ifs : ImageStkPtr);

This is generally an internal function. Do not use
it unless you have a clear understanding of inner

workings of the frame stack.

GetPartialFrontImage Function

Function

Declaration

Remarks

Gets the partial image of a frame and returns
pointer to a temporary buffer.

GetPartialFrontImage (Frame: ImageStkPtr;
x,y,x1,yl : Word) : ImageStkPtr;

This is a safer way to get the partial

image of a frame than using GetBiti.
Overlapping frames are partially removed and
then restored before returning.

TEGLUNIT

TEGLUNIT

Programmer's Reference Guide - 67 - TEGL Windows Toolkit

Chapter 4 - Frames

GetFrontImage Function TEGLUNIT

Function

Declaration

Remarks

Get the image of a frame and returns a pointer to
a temporary buffer.

GetFrontImage (1ifs : ImageStkPtr): ImageStkPtr;

This is a safer way to get the image of a
frame than using GetBiti. Overlapping

frames are partially removed and then restored
before returning.

PageInFS Procedure

TEGLUNIT

Function
Declaration

Remarks

See also

Example

Read an image into memory.
PageInFS (VAR ifs : ImageStkPtr);

If the image is already in memory then no action
is taken.

PageOutFsS.

This example checks to see if the image is in
memory first before attempting to read it in.
Note that PageInFS check this automatically
before reading in an image.

IF ifs”.ImagePageOut THEN { -- the image is not in memory }

PageInFS(ifs);

LockImage Procedure

TEGLUNIT

Programmer's Reference Guide - 68 - TEGL Windows Toolkit

Chapter 4 - Frames

Function
Declaration

Remarks

Restrictions

See also

Example

Locks an frame image into memory.
LockImage (VAR ifs : ImageStkPtr);

The image is read into memory if required. The
lock is maintained until a specific call is made
to UnLockImage.

Lock image can be used where it is desirable to
replicate an image on the screen repeatedly. After
it is locked then it can be placed on the screen
with a call to PutBiti.

This should be used with caution especially if you
are locking in a large image. You can fragment the
heap and the Virtual Memory Manager may not be able
to allocate a large enough memory block for
subsequent image swaps.

UnLockImage, Uselmage, UnUselmage
If the image is less than 64k then it can be copied

to Turbo's heap and then the image can be unlocked
reducing the chance of a heap error.

VAR ifs : ImageStackPtr;

buf : Pointer;

PushImage (100,100, 300,150);

ifs := StackPtr;

ShadowBox (100,100,300, 150);

{ -- do something with the frame }

{ -- then lock it so its not swapped out }
LockImage (ifs);

{ -=- allocate memory on Turbo's Heap }
GetMem (buf, ifs”.ImageSize);

{ -—- move it there }

buf”® := ifs”.imagesave;

{ -- unlock the image }

UnLockImage (ifs) :

Programmer's Reference Guide - 69 - TEGL Windows Toolkit

Chapter 4 - Frames

PageOutFS Procedure TEGLUNIT
Function
Page out a frame image.
Declaration
PageOutFS (VAR ifs : ImageStkPtr);
Remarks
If the image is successfully paged out to
EMS or disk then TEGLFreeMem is called
to free up the memory used.
Restrictions

If ifs is in use, or locked or already
paged out then no action is taken.

See also
PagelInFS.

Example

PageOutFS (ifs);
IF ifs”.ImagePageOut THEN { -- success }
ELSE ; { -- failure }

SetImageCoordinates Procedure TEGLUNIT

Function
Sets the frame pointer to a new set of coordinates.
Declaration
SetImageCoordinates (VAR ifs : ImageStkPtr;
x,y,x1,yl : Word);
Remarks

A frame's coordinates should not be changed if it is
visible.

Programmer's Reference Guide - 70 - TEGL Windows Toolkit

Chapter 4 - Frames

PageOutImageStack Function TEGLUNIT

Function
Requests the virtual memory manager to page out
images to make a chunk of memory available.

Declaration
PageOutImageStack (Mem : LongInt) : Boolean
Remarks
Mem is the amount of memory required. A large
value for Mem will result in all image buffers
being paged out. This function returns true if the
amount of memory requested has been freed.
Restrictions
Large amounts of memory are required to process
image swapping. If you allocate too much and don't
free it up as quickly as possible you may get a
heap error.
Example
{ -- force all imagebuffers to disk }
IF PageOutImageStack (512000) THEN; { -- ignore result }
{ -- do whatever needs that much memory }
SuperSortMemUse (MaxAvail) ;
SuperSort;
{ -- release it before working with windows again }

SuperSortFreeMem;

UnLockImage Procedure TEGLUNIT
Function
Unlocks a frame image.
Declaration
UnLockImage (VAR ifs : ImageStkPtr);
Remarks

Unlock simply sets a flag in the ImageStkPtr.
After unlocking, the Virtual Memory Manager can
swap the image to EMS or Disk as required. If the

Programmer's Reference Guide - 71 - TEGL Windows Toolkit

Chapter 4 - Frames

image wasn't locked then no action is taken.
Restrictions

See restrictions for LockImage.
See also

LockImage, UselImage, UnUselImage.

Example
See example for LockImage.
UnUseImage Procedure TEGLUNIT
Function
Flags a frame image as no longer in use.
Declaration
UnUseImage (VAR ifs : ImageStkPtr);
Remarks

This should be called as soon as possible after
a UseImage to keep as much memory free for
the Virtual Memory Manager.
See also
UselImage, LockImage, UnLockImage.
Example

UselImage (ifs);
{ -- do something with it }

{ -- then let the memory manager swap it out if required }
UnUseImage (ifs);

UselImage Procedure TEGLUNIT

Function

Makes an image available for use.
Declaration

Programmer's Reference Guide - 72 - TEGL Windows Toolkit

Chapter 4 - Frames

UselImage (VAR ifs : ImageStkPtr);

Remarks
The frame image is read into memory if not
already then and then flagged as being in
use.

Restrictions

If you do PrepareForUpdate then the
in use flag is set to false.
See also
UnUseImage, LockImage, UnLockImage.
Example

UselImage (ifs);
{ -- do something with it }

{ -- then let the memory manager swap it out if required }
UnUseImage (ifs);

Mouse Click Areas

Mouse click areas are those places on the screen where we sense if the
mouse pointer has passed over or has been clicked on. Frames can have
mouse click areas on them that are, of course, only available if the frame
is visible and the mouse click area is uncovered.

The sensitivity of the mouse click area has two levels. The most sensitive
is MsSense where just having the mouse pointer pass over the area

causes an action. The other level is MsClick where the mouse pointer

must be over the mouse click area and the left mouse button has been
pressed.

DefineMouseClickArea Procedure TEGLUNIT

Function
Attaches an sensitive area of a frame to an event
function.
Declaration
DefineMouseClickArea (VAR ifs : ImageStkPtr; x,y,x1l,yl:
Integer; Active : Boolean; P : CallProc, Sense: Boolean);

Programmer's Reference Guide - 73 - TEGL Windows Toolkit

Remarks

Restrictions

See also

Example

Chapter 4 - Frames

ifs is any ImageStkPtr. The x, y, x1, yl are coordinates
relative to a frame. This means that the upper left
corner of a frame is considered 0,0.

Active is a boolean flag to indicate whether the Mouse
Click Area is an active entry True or a place holder
False in a list of mouse clicks. A place holder is
simply a defined entry with no action recognized.

p is the event to call when the Mouse Click Area

is activated, either by the mouse pointer passing by
the click areas or a mouse click occurring on an click
area.

NilUnitProc may be used to define a no-event
handler. This may be used in conjunction with the
functions FindFrame and CheckMouseClickPos to
check for the respective mouse click activation.

NilUnitProc may also be used as a temporary
parameter. Use ResetMSClickCallProc to add the proper
event handler later.

Sense i1s either MSSense or MSClick. MSSense activates
the event handler whenever the mouse cursor passes over
the defined mouse click areas. MSClick requires the
right mouse button to be pressed while the mouse cursor
is on the mouse click area.

The number of mouse click areas is limited only by
memory. Overlapping click area take priority over
underlying click areas.

The coordinates of a Mouse click area must reside
within the Frame, otherwise the click areas are not
recognized.

FindMouseClickPtr, ResetMouseClicks,
ResetMSClickSense, ResetMSClickCallProc,
ResetMSClickActive, CheckMouseClickPos

The following example creates a frame that attaches an
'OK' icon with an Event Handler called DropBoxOption
which simply closes the frame and exits.

The function CheckforMouseSelect is used to create
the illusion of a button being pressed when clicked on.

Function DropBoxOption (Frame:ImageStkPtr; MouseClickPos: MSClickPtr) :WORD;

Programmer's Reference Guide - 74 - TEGL Windows Toolkit

Chapter 4 - Frames

BEGIN
IF CheckforMouseSelect (Frame)<>nil then
BEGIN
Hidemouse;
DropStackImage (Frame) ;
ShowMouse;
END;
DropBoxOption := 0;
END;

PushImage(1,1,100,100);

ShadowBox (1,1,100,100);

PutPict (50,80, @Imagelk,black);

DefineMouseClickArea (StackPtr, 50,80,50+35,80+12, true,
DropBoxOption,MSClick);

FindMouseClickPtr Function TEGLUNIT

Function
Searches for a Mouse Click Pointer associated with a
Mouse Click Number.

Declaration
FindMouseClickPtr (VAR ifs : ImageStkPtr; Clicknumber:
Word) ;

Result type
Returns a mouse click pointer (MSClickPtr), pointing to
a Mouse Click Record.

Remarks
Click Numbers are in the order that you define the
Mouse Click areas. The first DefineMouseClickArea is
known as Click Number 1, the second is Click Number 2,
etc..

In certain instances it is easier to advance through
the mouse click areas by Click Numbers. However, most
functions, including the calling of Events, pass the
Mouse Click Pointer.

To translate a Mouse Click Pointer back to a Click
Number, use the Mouse Click Pointer fields ie.
ClickNumber := MouseClickPos”.ClickNumber where
MouseClickPos is of type MSClickPtr.

Restrictions

Programmer's Reference Guide - 75 - TEGL Windows Toolkit

Chapter 4 - Frames

FindMouseClickPtr returns a Nil if the clicknumber is
not found. Compare the resulting MSClickPtr with Nil
before referencing the record.

See also
DefineMouseClickPtr, ResetMouseClicks,
ResetMSClickSense, ResetMSClickCallProc,
ResetMSClickActive, CheckMouseClickPos

Example
The following example defines an array of 100 Mouse
Click Areas. You may click with the left mouse button
on the individual tiles to produce a sound, or on the
'OK' to produce a series of sounds.

The function FindMouseClickPtr is used within the
event handler PlayAllNotes to translate a random
click number into a note.

The function CheckforMouseSelect is used to create
the illusion of a button being pressed when clicked on.

VAR %X,y : word;

Function PlayOneNote (Frame:ImageStkPtr;
MouseClickPos: MSClickPtr) :WORD;

BEGIN
ToggleOptionBar (Frame, MouseClickPos,nil);
Beep (MouseClickPos”.clicknumber*10,1,100);
ToggleOptionBar (Frame,nil, MouseClickPos) ;
PlayOneNote := 0;

END;

Function PlayAllNotes (Frame:ImageStkPtr;
MouseClickPos: MSClickPtr) :WORD;
VAR i,rs : word;
BEGIN
IF CheckforMouseSelect (Frame)<>nil THEN
BEGIN
FOR i:=1 to 30 DO
rs := PlayOneNote (Frame, FindMouseClickPtr (Frame,
random (100)+1));
END;
PlayAllNotes := 0;
END;

PushImage(1,1,107,124);
ShadowBox (1,1,107,124);

FOR x:=0 to 9 DO
FOR y:=0 to 9 DO

Programmer's Reference Guide - 76 - TEGL Windows Toolkit

Chapter 4 - Frames

BEGIN
ShadowBox (StackPtr”.x+3+x*10, StackPtr”.y+3+y*10,
StackPtr”.x+3+10+x*10, StackPtr”.y+3+10+y*10);
DefineMouseClickArea (StackPtr, 3+x*10, 3+y*10,
3+x*10+6,3+y*10+6, true,PlayOneNote,MSClick) ;
END;

Putpict (StackPtr”.x+50, StackPtr”.y+105, @imageok,black);
DefineMouseClickArea (StackPtr,50,105,50+35,105+12, true,
PlayAllNotes,MSClick);

ResetMSClickActive Procedure TEGLUNIT

Function
Resets the active flag to indicate whether a Mouse
Click Area Entry is active or inactive.

Declaration

ResetMSClickActive (VAR ifs: ImageStkPtr;
MouseClickNumber : Word; Active : Boolean);

Remarks
The MouseClickNumber is in the order that you defined
the Mouse Click areas. The first DefineMouseClickArea
is known as MouseClickNumber 1, the second is
MouseClickNumber 2, etc..
Active is a boolean flag to indicate whether the Mouse
Click Area is an active entry (True) or a place holder
(False) in a list of mouse clicks. A place holder is
simple a defined entry with no action recognized.

Restrictions

If the MouseClickNumber is invalid, the flag is not
updated.

See also
DefineMouseClickPtr, ResetMouseClicks,
FindMouseClickPtr, ResetMSClickSense,
ResetMSClickCallProc, CheckMouseClickPos

Example
This example creates an array of 10 buttons which all
point to the same Event Handler SwitchOn. The
active flag for a pressed button is turned off to
prevent multiple calls to SwitchOn, until another
button is pressed. ResetMSClickActive is used
within SwitchOn to toggle the button Active state.

Programmer's Reference Guide - 77 - TEGL Windows Toolkit

Chapter 4 - Frames

VAR %X,y : word;

function SwitchOn (Frame:ImageStkPtr;
MouseClickPos: MsClickPtr) : word;

VAR 1 : word;
ms : msclickptr;
BEGIN

Beep (1500,1,10);

FOR i:=1 to Frame”.MSClickCount DO
BEGIN
MS := FindMouseClickPtr (Frame, i);
IF NOT MS”.MSActive THEN
BEGIN
HideMouse;
PutPict (Frame” .x+MS”.ms.x,Frame”.y+MS*.ms.vy,
@imageBlankBut,black);
ResetMSClickActive (Frame, MS”.ClickNumber, true);
ShowMouse;
END;
END;

HideMouse;

PutPict (Frame”.x+MouseClickPos”.ms.x,
Frame”.y+MouseClickPos”.ms.y, @ImageQOk,black);

ShowMouse;

PressButton (Frame, MouseClickPos) ;

ResetMSClickActive (Frame,MouseClickPos”.ClickNumber, false);

SwitchOn := 1;
END;

PushImage(1,1,100,100);
ShadowBox (1,1,100,100);

FOR x:=0 to 1 DO
FOR y:=0 to 4 DO
BEGIN
Putpict (StackPtr”.x+6+x*42, StackPtr”.y+6+y*18,
@imageBlankBut,black);
DefineMouseClickArea (StackPtr, 5+x*42,5+y*18,
5+x*42+35,5+y*18+12, true, SwitchOn,MSClick) ;
END;

Programmer's Reference Guide - 78 - TEGL Windows Toolkit

Chapter 4 - Frames

ResetMSClickCallProc Procedure TEGLUNIT

Function
Changes the Event Handler for a Mouse click to another
Event Handler.

Declaration
ResetMSClickCallProc(ifs : ImageStkPtr; MouseClickNumber:

Word; P : CallProc);

Remarks
MouseClickNumbers are in the order that you define the
Mouse Click areas. The first DefineMouseClickArea is
known as MouseClickNumber 1, the second is
MouseClickNumber 2, etc..

p is the event to pass control to when the mouse
click area 1is actived.

NilUnitProc may be used to define a no-event
handler. This may be used in conjunction with the
functions FindFrame and CheckMouseClickPos to
check for the respective mouse click activation.

NilUnitProc may also be used to deactivate an
event handler.

See also
DefineMouseClickPtr, ResetMouseClicks,
FindMouseClickPtr, ResetMSClickSense,
ResetMSClickActive, CheckMouseClickPos

Example
This example switches between two events that play a
different series of sounds. The function
CheckforMouseSelect is used to create the illusion of
a button being pressed when clicked on.

function FirstSong (Frame:ImageStkPtr;
MouseClickPos: MsClickPtr): word; FORWARD;

function SecondSong (Frame:ImageStkPtr;
MouseClickPos: MsClickPtr): word;

BEGIN
IF CheckforMouseSelect (Frame)<>nil THEN
BEGIN
Beep (1500,5,100);
ResetMSClickCallProc (frame,
MouseClickPos”.ClickNumber, FirstSong) ;
END;

SecondSong := 1;

Programmer's Reference Guide - 79 - TEGL Windows Toolkit

Chapter 4 - Frames
END;

function FirstSong(Frame:ImageStkPtr;
MouseClickPos: msclickptr) : word;
BEGIN
IF CheckforMouseSelect (Frame)<>nil THEN
BEGIN
SlideBeep (500,1500,2);
ResetMSClickCallProc (frame,
MouseClickPos”.ClickNumber, SecondSong) ;
END;
FirstSong := 1;
END;

PushImage(1,1,100,100);

ShadowBox (1,1,100,100);

Putpict (StackPtr”.x+51, StackPtr”.y+81, @ImageOk,black);

DefineMouseClickArea (StackPtr, 50,80,50+35,80+12,
true,FirstSong,MSClick);

ResetMouseClicks Procedure TEGLUNIT
Function
Removes a chain of mouse click areas from a frame.
Declaration
ResetMouseClicks (Frame, ClickPtr:MSClickPtr)
Remarks
The ClickPtr parameter is the last click pointer from
where the remainder of the chain of click areas will be
removed.
A parameter of Nil removes the Mouse Click Area
chain completely.
Restrictions

The ClickPtr should be a valid Mouse Click Ptr. Use
FindMouseClickPtr to locate a wvalid pointer.

If ClickPtr is invalid, the parameter will be treated
as Nil.

See also
DefineMouseClickPtr, FindMouseClickPtr,
ResetMSClickSense, ResetMSClickCallProc,
ResetMSClickActive, CheckMouseClickPos

Programmer's Reference Guide - 80 - TEGL Windows Toolkit

Example

Chapter 4 - Frames

The following example displays a varying number of bars
that can be selected. The Event Handler

ShowBarList plays a sound corresponding to the bar
selected and clears the frame and re-displays a new
series of bars.

Function ShowBarList (Frame:ImageStkPtr;

MouseClickPos: MSClickPtr) :WORD; FORWARD;

Procedure ShowVaryList (fs:ImageStkPtr; N:word);
VAR y : word;
BEGIN
ResetMouseClicks (fs,nil);
FOR y:=0 to n DO

END;

BEGIN
ShadowBox (fs”*.x+5, fs".y+3+y*10, £fs*.x1-8, £fs*.y+3+10+y*10) ;
DefineMouseClickArea (StackPtr, 5, 3+y*10,

fs*.x1-fs".x-10,3+y*10+6, true, ShowBarList,MSClick) ;
END;

Function ShowBarList (Frame:ImageStkPtr;

BEGIN

MouseClickPos: MSClickPtr) :WORD;

ToggleOptionBar (Frame, MouseClickPos,nil);

Beep (MouseClickPos”.clicknumber*30,10,100);
HideMouse;

ShadowBox (frame”.x, frame” .y, frame”.x1, frame”®.yl);
ShowVaryList (frame, random (10) +1) ;

ShowMouse;

END;

PushImage(1,1,107,124);
ShadowBox (1,1,107,124);
ShowVaryList (StackPtr, random (10) +1) ;

ResetMSClickSense Procedure TEGLUNIT

Function

Resets the Sense parameter associated with a Mouse

Programmer's Reference Guide - 81 - TEGL Windows Toolkit

Chapter 4 - Frames

Click Area.

Declaration
ResetMSClickSense (VAR ifs : ImageStkPtr; NewSense

Boolean;)

Remarks
NewSense is either MSSense or MSClick. MSSense
activates the event handler whenever the mouse cursor
passes over the defined mouse click areas. MSClick
requires the right mouse button to be pressed while the
mouse cursor is on the mouse click area.

Restrictions
ResetMSClickSense resets the Sense type for the chain
of all Mouse Clicks. If you have a mixture of different
senses, use a combination of FindMouseClickPtr and
field settings to reset the sense.

See also
DefineMouseClickPtr, ResetMouseClicks,
FindMouseClickPtr, ResetMSClickCallProc,
ResetMSClickActive, CheckMouseClickPos

Example
The following example requires a menu selection to
toggle between the menu dropping down automatically or
requiring a mouse clickon the menu bar.
VAR OM1 : OptionMptr;
ToggleSense : boolean;

Function ToggleClickSense (Frame:ImageStkPtr;
MouseClickPos: MsClickPtr) : word;
VAR MenuBarF'S : ImageStkPtr;
BEGIN
MenubarFS := Frame”.RelatedStack;

ToggleSense := NOT ToggleSense;
ResetMSClickSense (MenubarFS, ToggleSense) ;

ToggleClickSense := 1;
END;

OM1 := CreateOptionMenu (RFONT14) ;
DefineOptions (OM1, 'Toggle Click Sense',true,ToggleClickSense);

FONTTABLE := Q@FONT14;
CreateBarMenu (0,0, 639);
OutBarOption (' ToggleBar ',0OM1l);
OutBarOption (' ToggleTwo ',0OM1);
ToggleSense := MSSense;

Programmer's Reference Guide - 82 - TEGL Windows Toolkit

Chapter 4 - Frames

Keyboard
ClearKeyBoardBuf Procedure TEGLUNIT
Function
Clears the hardware keyboard buffer.
Declaration

ClearKeyBoardBuf;
See also
ClearTEGLKeyBoardBuf.

ClearTEGLKeyBoardBuf Procedure TEGLUNIT
Function

Clears the software buffer maintained by the

Toolkit.
Declaration

ClearTEGLKeyBoardBuf;
Remarks

This will discard all pending keystrokes.
DefineGlobalKeyClickArea Procedure TEGLUNIT
Function

Flexible keycode assignment.
Declaration

DefineGlobalKeyClickArea(ifs : ImageStkPtr;

Programmer's Reference Guide - 83 - TEGL Windows Toolkit

Remarks

Restrictions

See also

Chapter 4 - Frames

ms : MsClickPtr; KeyCode : Word; RepeatKey: Boolean;
p : CallProc);

ifs is the frame and ms is the mouse click
area the key is assigned to, these are passed to

P.

If ifs and ms are set to nil then the frame

and mouse click area that the mouse pointer is over are
passed to p. If the mouse pointer is not over a

frame then Nil is passed to p.

If RepeatKey i1s set True then addition key presses
are buffered, otherwise, they are discarded.

A special case for this routine is passing 0 as the
keycode parameter. In this case any key that is not
being trapped for will activate p. The key pressed
can be determined by using ReadKey.

Only the most recently declared key is trapped if a key
is trapped more than once.

DefinelLocalKeyClickArea.

DefinelLocalKeyClickArea Procedure TEGLUNIT
Function

Assign a keycode to a frame and mouse click area.
Declaration

DefinelocalKeyClickArea (fs : ImageStkPtr;

ms : MsClickPtr; KeyCode : Word; RepeatKey: Boolean:
p : CallProc);

Remarks

See also

ifs is the frame and ms is the mouse click
area the key is assigned to, these are passed to p.

If RepeatKey is set TRUE then addition key presses
are buffered otherwise they are discarded.

Within a frame DefinelocalKeyClickArea has
prioritry over DefineGlobalKeyClickArea.

DefineGlobalKeyClickArea.

Programmer's Reference Guide - 84 - TEGL Windows Toolkit

Chapter 4 - Frames

DropKeyClick Procedure TEGLUNIT
Function
Removes a key trap.
Declaration
DropKeyClick (ifs : ImageStkPtr; KeyCode: Word;
p : CallProc):
Remarks
If ifs is not Nil then the frame's local key
stack is searched first. If the key is not found then
the search proceeds to the global key stack.
p must match the CallProc that the key was
originally assigned to.
FindKeyClickPtr Function TEGLUNIT
Function
Locates a key assignment.
Declaration
FindKeyClickPtr (ifs : ImageStkPtr; Keycode: Word)
KeyClickPtr;
Remarks

If ifs is not Nil then the frame's local key stack
is searched first. If the key is not found then the
search proceeds to the global key stack
KeyStackPtr.

If the KeyCode is not found then NIL is returned.

ResetKeyClickCallProc Procedure TEGLUNIT

Programmer's Reference Guide - 85 - TEGL Windows Toolkit

Function

Declaration

Remarks

Chapter 4 - Frames

Changes the CallProc a key is assigned to.

ResetKeyClickCallProc (ifs : ImageStkPtr; Keycode: Word;
p : CallProc);

If ifs is not NIL then the frame's local key stack
is searched first. If the key is not found then the
search proceeds to the global key stack
KeyStackPtr.

If KeyCode is not found then no action is taken.

Programmer's Reference Guide - 86 - TEGL Windows Toolkit

Chapter 5 - Menus

Drop Down, Pop Up Menus

The Menu unit is good example of an event library that you can add to the
power of TEGL Windows. The generic pull-down or drop-down menus provides a
wide range of menu architecture that will meet most application needs.

A Menu event uses the standard OutTEGLTextXY and DefineMouseClickArea
procedures to list and to create additional mouse click areas on the
screen.

Even though the menu unit is comprehensive, TEGL Windows is not limited to
a standard architecture of menus. The menu unit may be used as an example
in creating other types of menu events; such as hanging menus which are
not dependent on a bar type selection; or an icon menu, that when clicked
on explodes to display a box full of icons that can be selected from.

The entries for the menu unit are created and linked at run-time. The
entries may be manipulated, copied, or deleted as required within the
program. In comparison, some systems offer a external menu compiler which
links the menu with the program at compile time. The advantages to an
external menu compiler are minimal, and it adds another step in creating a
menu system.

The advantages to creating dynamic menus at run-time, is the ability to
create a menu system that is based on an external text file (ie. the menu
text selections may be stored in a text file and read in at run-time to
create a menu) .

Creating a Menu

Creating a bar menu is a two step process. The first is to create the
entry text list that is associated with a option menu. The second is the
creation of the menu bar from which option menus may be selected. You may
use the first step by itself to attach an Option Entry list to icon,
instead of a bar.

Creating a entry text list

An entry text list is simply an linked chain of text entries, with a root
entry for each text list.

S Iy + Iy +——+ Iy +——t
| AnchorOMPtr | -—--- >|optionMenu |01|------ >|optionMenu |02|----- >nil
Iy + o o +——+ . e +——+
* *
S +——+ Iy +——+t
|OptionEntry|01 | |OptionEntry|01 |

Programmer's Reference Guide - 87 - TEGL Windows Toolkit

Chapter 5 - Menus

* *
S +——+ Iy +——+t
|OptionEntry|02 | |OptionEntry|02 |
S T ——— S S ——— T ——— +-—+
* *
- +-—+ nil
|OptionEntry|03|
. . +——+
*
nil
e +
OptionMenu = record
NextOM : OptionMPtr;+
numofentries : word;
——————— > maxwidth : word; e | ——_—— >
padding : word;
fonttype : pointer;
F———— FirstEntry : OptionEPtr;
CurrentEntry : OptionEPtr;
end;
e +
A |- - +
*
e +——+
OptionEntry = record |Ol
F———— NextOE : OptionEPtr;+--
entryline : string[40];
entryactive : boolean;
entrycolor : integer;
entrycallproc : callproc;
end;
e +
o | - - +

OM is a short form for an OptionMenu record. This is the header

or the root entry for an entry list. The header contains information
regarding the number of entries, the maximum width of the entries, the
amount of padding on left and right when displayed and the font type that
is used. By duplicating the header with a different set of parameters, an
Option Entry list may be chained to two or more headers to allow for
different fonts.

S Sy + Iy +
---->|OptionMenu |----- >|oOptionMenu |--->
e e + e T ----- +

__________________ +

Programmer's Reference Guide - 88 - TEGL Windows Toolkit

Chapter 5 - Menus

|OptionEntry|

OE is a short form for an OptionEntry record. There is no limit

to the number of OE records that a list can contain, with the

exception that the number of entries cannot be greater than the size of
the screen when the OE list is displayed. This is a limitation of the
ListOptionMenu procedure within the Menu unit and the screen vertical
size, rather then a maximum entry limitation. The ListOptionMenu

event could be modified to accommodate lists greater then the screen size
by displaying a portion of a list and adding another event to display the
remainder.

The OE record contains the entry (text) line, as well as information
on whether the entry line is active or inactive (place holder), its color,
and the event that is called when it is selected.

CreateOptionMenu Function TEGLMENU

Function

Creates an Option Menu header.
Declaration

CreateOptionMenu (Fonttype:pointer): OptionMPtr;
Result type

Returns an Option Menu pointer type.

Remarks
Fonttype is one of the fonts in the font library.
The option menu header is used to build and reference
the Option Entry list. Use this OM pointer
when calling the procedure DefineOptions.
Restrictions

To create multiple OM headers with different fonts
on a single OE list, use CreateShadowOM to
automatically create and link the OE list to a
new OM header.

See also
DefineOptions, CreateShadowOM

Example

var OM1l, OM2 : optionmptr;

OM1 := CreateOptionMenu (@fontl4);

Programmer's Reference Guide - 89 - TEGL Windows Toolkit

Chapter 5 - Menus

OM2 := CreateOptionMenu (@script);

DefineOptions Procedure TEGLMENU

Function

Declaration

Remarks

Restrictions

See also

Example

Adds Option Entries to an Option Menu.

DefineOptions (var OM; EntryStr:string; Active: boolean;
p : callproc);

The OM pointer must be defined by
CreateOptionMenu before Option Entries may be
added.

EntryStr is the text string to be displayed when

the Option menu is opened. The EntryStr has two

types of control character which may be embedded as
part of the string. The g - is used to display a

dotted separator line between options. To underline a
character or a series of characters, add the wvalue of
128 to the ascii value. The underline character is only
valid for characters that do not have descenders.

Active specifies whether this entry is active (can
be selected) or not active. Inactive entries are
displayed as jagged characters.

p defines the Event that is associated with
this menu entry. The p is attached automatically
to the option entry when the option menu is displayed.

There are no limitations on the number of entries that
can be defined under a single OM header. However,
too many entries will list past the bottom of the screen.

CreateOptionMenu, CreateShadowOM, UnderLineChar

Programmer's Reference Guide - 90 - TEGL Windows Toolkit

Chapter 5 - Menus

var OM1l : optionmptr;

OM1 := CreateOptionMenu (@fontl4);
DefineOptions (OM1, 'DeskTop Info...', true,InfoOption);
DefineOptions (OM1, '--', false,nilunitproc);
DefineOptions (OM1, 'Calculator', true,nilunitproc);
DefineOptions (OM1, "Clock',true,nilunitproc);
DefineOptions (OM1, 'Snapshot',true,nilunitproc);

CreateShadowOM Function TEGLMENU

Function
Creates a duplicate Option Menu Header with a different
Font type.
Declaration
CreateShadowOM (OM:OptionMPtr; Fonttype:pointer)
OptionMPtr;

Result type
Returns an new Option Menu pointer type.
Remarks
OM must be an existing OptionMenu pointer.
Fonttype is one of the fonts in the font library.
Restrictions
The original OM pointer must be defined by
CreateOptionMenu before a duplicate Option Menu
header may be created.
See also
CreateOptionMenu, ResizeOptionMenu
Example

var OM1,0M2 : optionmptr;

OM1 := CreateOptionMenu (@fontl4);
DefineOptions (OM1, 'DeskTop Info...', true,InfoOption);
DefineOptions (OM1, '--', false,nilunitproc);
DefineOptions (OM1, 'Calculator', true,nilunitproc);
DefineOptions (OM1, "Clock',true,nilunitproc);
DefineOptions (OM1, 'Snapshot',true,nilunitproc);

Programmer's Reference Guide - 91 - TEGL Windows Toolkit

Chapter 5 - Menus

OM2 := CreateShadowOM (OM1, @Script) ;

ResizeOptionMenu Procedure TEGLMENU

Function

Declaration

Remarks

See also

Example

Allows an Option Menu header to recalculate the
size of the option menu window when changing the font

type.

ResizeOptionMenu (OM:OptionMPtr; Fonttype:
pointer)

OM must be an existing OptionMenu pointer.
Fonttype is one of the fonts in the font library.

CreateOptionMenu, CreateShadowOM

var OM1l : optionmptr;

OM1 := CreateOptionMenu (@fontl4);

DefineOptions (OM1,
DefineOptions (OM1,
DefineOptions (OM1,
DefineOptions (OM1,
DefineOptions (OM1,

'DeskTop Info...',true,InfoOption);
'--',false,nilunitproc);
'"Calculator',true,nilunitproc);
'"Clock',true,nilunitproc);

'"ITcon Display', true, Icons);

ResizeOptionMenu (OM1, @Script) ;
{ -- Changes the font type @Fontl4d to @Script}

Programmer's Reference Guide - 92 - TEGL Windows Toolkit

Chapter 5 - Menus

ToggleCheckMark Procedure

TEGLMENU

Function

Declaration

Remarks

See also

Example

Changes the first character of an entry string to 0x30

(check mark) or a 0x32 (space).

ToggleCheckMark (OMNum, OENum : word; status:boolean);

OMNum is the position of the Option Menu header
relative to the AnchorOMPtr. OENum is the
position of the Option Entry relative to the OM
header.

Status of True will change the first character

of the entry to a checkmark, False will change the

character to a space.

ToggleEntryStatus, ReplaceOptionText

var OM1l : optionmptr;

OM1 := CreateOptionMenu (@fontl4);

DefineOptions (OM1,
DefineOptions (OM1,
DefineOptions (OM1,
DefineOptions (OM1,
DefineOptions (OM1,
DefineOptions (OM1,
DefineOptions (OM1,

Py

Show as Icons ',true,ViewOptionToggle);

Show as Text ',true,ViewOptionToggle);
-',false,nilunitproc);

Sort by Name ',true,ViewOptionToggle);

Sort by Date ',true,ViewOptionToggle);

Sort by Size ',true,ViewOptionToggle);

Sort by Type ',true,ViewOptionToggle);

ToggleCheckMark (1, 7, TRUE) ;
{puts a check mark at the front of Sort by Type}

ToggleEntryStatus Procedure

TEGLMENU

Function

Sets an Option entry to active or not active.

Programmer's Reference Guide - 93 - TEGL Windows Toolkit

Chapter 5 - Menus

Declaration
ToggleEntryStatus (OMNum, OENum:word; status:
boolean)

Remarks
OMNum is the position of the Option Menu header
relative to the AnchorOMPtr.

OENum is the position of the Option Entry relative
to the OM header.

Status of True will set the entry as active,

False will set the entry to nonactive. Active

specifies whether this entry is active (can be
selected) or nonactive. Nonactive entries are displayed
as jagged characters.

See also
ToggleCheckMark, ReplaceOptionText
Example

var OM1l : optionmptr;

OM1 := CreateOptionMenu (@fontl4);
DefineOptions (OM1, 'DeskTop Info...', true,InfoOption);
DefineOptions (OM1, '--', false,nilunitproc);
DefineOptions (OM1, 'Calculator', true,nilunitproc);
DefineOptions (OM1, "Clock',true,nilunitproc);
DefineOptions (OM1, 'Snapshot', true, Snapshot) ;

ToggleEntryStatus (1l,5,FALSE); {toggles Snapshot off}

ReplaceOptionText Procedure TEGLMENU
Function

Replaces Option entry string by another text string.
Declaration

ReplaceOptionText (OMNum, OENum : word; EntryStr:

string)
Remarks

OMNum is the position of the Option Menu header

Programmer's Reference Guide - 94 - TEGL Windows Toolkit

See also

Example

Chapter 5 - Menus
relative to the AnchorOMPtr.

OENum is the position of the Option Entry relative
to the OM header.

EntryStr is a replacement text string that will be
displayed when the Option menu is opened. The
EntryStr has two types of control character which may
be embedded as part of the string. The g - is used to
display a dotted separator line between options. To
underline a character or a series of characters, add
the value of 128 to the ascii value. The underline
character only works with characters that do not have
descenders.

ToggleCheckMark, ToggleEntryStatus

VAR OM1 : optionmptr;

OM1 := CreateOptionMenu (@fontl4);
DefineOptions (OM1, 'DeskTop Info...', true,InfoOption);
DefineOptions (OM1, '--', false,nilunitproc);

(
DefineOptions (OM1, 'Calculator', true,nilunitproc);
DefineOptions (OM1, "Clock',true,nilunitproc);
DefineOptions (OM1, '"Icon Display',true, Icons);

{ -- Replaces "Icon Display" with "Text Display"}
ReplaceOptionText (1,5, "Text Display");

ToggleOptionBar Procedure TEGLUNIT
Function
Inverts mouse click areas.
Declaration
ToggleOptionBar (ifs : ImageStkPtr;
Opt, LastOpt: MsClickPtr);
Remarks

Opt and LastOpt mouse click areas are
inverted. It is assumed that LastOpt has

Programmer's Reference Guide - 95 - TEGL Windows Toolkit

Chapter 5 - Menus

already been inverted and this call would return
it to normal.

SetOptionMenuColors Procedure TEGLMENU
Function

Changes the menu entry colors.
Declaration

SetOptionMenuColors (activecolor, inactivecolor:word) ;
Remarks

activecolor is the text color for active entries.

inactivecolor is the text color for entries that
are currently inactive but have entry positions within
the menu.
See also
SetOptionMenuBorderColor
Example

SetOptionMenuColors (Black, LightGray) ;

SetOptionMenuBorderColor Procedure TEGLMENU
Function
Changes the color of the option menu border.
Declaration
SetOptionMenuBorderColors (color:word)
Remarks

color is the color of the border.
See also

SetOptionMenuColors
Example

SetOptionMenuBorderColor (white);

Programmer's Reference Guide - 96 - TEGL Windows Toolkit

Chapter 5 - Menus

SetHideSubMenu Procedure TEGLMENU
Function
Toggles the hiding of sub menus.
Declaration
SetHideSubMenu (OnOff : Boolean);
Remarks
Default is true. When a submenu is pulled down from a
bar menu it is normally hidden when a selection is
made. If set to false then the pulldown is left
displayed until the selection that was made returns.
Example

SetHideSubMenu (True) ;

Creating a Bar Menu

A bar menu is one of the more popular methods of creating a user interface.
As mentioned before, a bar menu is simply another event with the event
handler set to BarOptionMenu. BarOptionMenu is activated

whenever the mouse cursor passes by the one of the defined mouse click
areas on the bar.

When BarOptionMenu is activated, OptionMenuSelection is called
in place of the TEGLSupervisor.

There are three activities within a menu system that require a rewrite of
the TEGLSupervisor. OptionMenuSelection checks if
The mouse is clicked outside the menu bar or menu window thus closing

any active menus and returning back to the TEGL supervisor.

Sensing the mouse cursor movement to another bar entry, thus closing
any active menu and opening another menu window.

Sensing the mouse cursor moving to another entry within a menu and
highlighting the entry.

Programmer's Reference Guide - 97 - TEGL Windows Toolkit

Chapter 5 - Menus

CreateBarMenu Procedure TEGLMENU
Function
Creates a Bar window frame.
Declaration
CreateBarMenu (x,y,ln:word)
Remarks

See also

Example

X, y 1s the position of the bar menu frame.
In is the pixel length of the bar.

OutBarOption

CreateBarMenu (0, 0, GetMaxX) ;

OutBarOption Procedure TEGLMENU

Function

Declaration

Remarks

See also

Example

Attaches an option menu (list) to a displayed text
string on the BAR.

OutBarOption (EntryStr:string; OM:OptionMptr)

EntryStr is the bar text header that is associated
with the OM list.

OM is the Option Menu header returned from
CreateOptionMenu.

CreateBarMenu

Programmer's Reference Guide - 98 - TEGL Windows Toolkit

Chapter 5 - Menus
VAR OM1 : optionmptr;

OM1 := CreateOptionMenu (@fontl4);
DefineOptions (OM1,' Show as Icons ', true,ViewOptionToggle);

DefineOptions (OM1,' Show as Text ', true,ViewOptionToggle);
DefineOptions (OM1, '-', false,nilunitproc);

DefineOptions (OM1,' Sort by Name ', true,ViewOptionToggle);
DefineOptions (OM1,' Sort by Date ', true,ViewOptionToggle);
DefineOptions (OM1,' Sort by Size ', true,ViewOptionToggle);
DefineOptions (OM1,' Sort by Type ', true,ViewOptionToggle);

CreateBarMenu (0,0, 639);
OutBarOption (' Options ',0OM1);

SetBarTextColor Procedure TEGLMENU
Function
Changes the default text color on the bar.
Declaration
SetBarTextColor (color:word)
Remarks

color is the default text color on the bar.
See also

SetBarMenuColor, SetBarBorderColor
Example

SetBarTextColor (green) ;

SetBarMenuColor Procedure TEGLMENU

Function

Changes the bar color.
Declaration

SetBarMenuColor (color:word)
Remarks

Programmer's Reference Guide - 99 - TEGL Windows Toolkit

Chapter 5 - Menus

color is the default color for the bar.
See also

SetBarMenuColor, SetBarBorderColor
Example

SetBarMenuColor (blue) ;

SetBarBorderColor Procedure TEGLMENU

Function
Changes the bar border color and toggles the border on.

Declaration
SetBarBorderColor (color:word)
Remarks
color is the default border color for the bar.
See also
SetBarTextColor, SetBarBorderOff
Example

SetBarBorderColor (green) ;

SetBarBorderOff Procedure TEGLMENU
Function
Toggles the bar border off.
Declaration
SetBarBorderOff
Remarks

SetBarBorderColor resets the border on.
See also

SetBarBorderColor, SetBarTextColor
Example

Programmer's Reference Guide - 100 - TEGL Windows Toolkit

Chapter 5 - Menus

SetBarBorderOff;
SetBarShadowtext Procedure TEGLMENU
Function
Toggles Bar Shadow Text on/off.
Declaration
SetBarShadowtext (OnOff:boolean)
Remarks
OnOff is a boolean type, where TRUE is on and
FALSE is off.
Example

SetBarShadowText (True) ;

SetBarFillStyle Procedure TEGLMENU
Function
Sets the Bar Fill Style.
Declaration
SetBarFillStyle (pattern:word)
Remarks

Sets the pattern for the bar. The fill patterns are
defined by constants in the Graph unit.

Pattern is a numeric type.

See also
SetFillStyle (Graph Unit).
Example

SetBarFillStyle (BkSlashFill);

Programmer's Reference Guide - 101 - TEGL Windows Toolkit

Chapter 5 - Menus

SetBarMenuMargin Procedure TEGLMENU
Function
Sets the left margin on the barmenu.
Declaration
SetBarMenuMargin (Margin: Word) ;
Remarks
Margin is the desired left margin where the menu
selections start at. This wvalue is in pixels and the
default is 16.
Can be used if a icon or some symbol should be displayed
at the extreme left of the menu.
Example

SetBarMenuMargin (32);

Icon Option Menus
Optionally you can attach a menu to an icon or an area of a frame.

The following procedure adds a drop down menu to any frame area.

DefineOptionClickArea Procedure TEGLMENU
Function
Attaches an option menu (list) to a frame or icon area.
Declaration
DefineOptionClickArea (var ifs; x,y,x1,yl:word; OM:OptionMPtr;
Sense:boolean; OMType:byte)
Remarks

ifs is any ImageStkPtr. The x, y, x1, yl are
coordinates relative to a frame. This means that the
upper left corner of a frame is considered 0,0.

Programmer's Reference Guide - 102 - TEGL Windows Toolkit

See also

Example

VAR OM1 : optionmpt

OM1 := CreateOpti
DefineOptions (OM1
DefineOptions (OM1
DefineOptions (OM1
DefineOptions (OM1
DefineOptions (OM1
DefineOptions (OM1
DefineOptions (OM1

~ o~ o~ o~~~

PushImage (530, 320
PutPict (530,320, @

Chapter 5 - Menus

OM is the Option Menu header returned from
CreateOptionMenu.

Sense 1s either MSSense or MSClick. MSSense
activates the menu event handler whenever the mouse
cursor passes over the defined mouse click
areas.4MSClick requires the right mouse button to be
pressed while the mouse cursor is on the mouse click
area.

OMType is the enumerated type of UpperRight,

Upperleft, LowerRight, and LowerLeft, which specifies
whether the menu pop-down at the upper right or upper
left corner, or pop-up at the lower right or lower left
corner.

DefineMouseClickArea, ResetOptionMenuEvents

ry

onMenu (@fontl4);

;' Show as Icons ',true,ViewOptionToggle);

;' Show as Text ', true,ViewOptionToggle);

'-',false,nilunitproc);

;' Sort by Name ', true,ViewOptionToggle)

,' Sort by Date ',true,ViewOptionToggle)
' Sort by Size ',true,ViewOptionToggle)
! ',true,ViewOptionToggle)

’
’

p Sort by Type

’
’
’
’

,624,340) ;
ImageCredits,black);

DefineOptionClickArea (StackPtr,0,0,93,19,0M1,MSClick,

LowerRight) ;

ResetOptionMenuEvents Procedure TEGLMENU

Function

Eliminates duplicate menu events where the frame has
been closed.

Programmer's Reference Guide - 103 - TEGL Windows Toolkit

Chapter 5 - Menus

Declaration
ResetOptionMenuEvents

Remarks
The Menu unit keeps track of menu to frame attachments.
In most cases the attachment is permanent, that is,
until the program terminates. However in some cases,
like the icon editor, the menu to frame attachment
changes every time the icon editor explodes or implodes
an icon image. Since the Menu unit has no way of
knowing whether the attachment still exists, a special
procedure was created to eliminate duplicate or
nonexistent event relationships.

The only problem with not calling
ResetOptionMenuEvents would be an accumulation of menu
events for non-existing frames. Eventually the heap
area will overflow.

See also
DefineOptionClickArea

Example

VAR OM1 : Optionmptr;

OM1 := CreateOptionMenu (@fontl4);
DefineOptions (OM1,' Show as Icons ', true,ViewOptionToggle);

DefineOptions (OM1,' Show as Text ', true,ViewOptionToggle);
DefineOptions (OM1, '-', false,nilunitproc);

DefineOptions (OM1,' Sort by Name ', true,ViewOptionToggle);
DefineOptions (OM1,' Sort by Date ', true,ViewOptionToggle);
DefineOptions (OM1,' Sort by Size ', true,ViewOptionToggle);
DefineOptions (OM1,' Sort by Type ', true,ViewOptionToggle);

PushImage (530,320, 624, 340) ;

PutPict (530,320, @imagecredits,black);

DefineOptionClickArea (StackPtr,0,0,93,19,0M1,MSClick, LowerRight) ;
PopImage;

PushImage (530,320, 624, 340) ;

PutPict (530,320, @imagecredits,black);

DefineOptionClickArea (stackptr,0,0,93,19,0M1,MSClick, LowerRight) ;
ResetOptionMenuEvents;

Programmer's Reference Guide - 104 - TEGL Windows Toolkit

Chapter 6 - Mouse, Keyboard and Timer Handlers

Interrupt Handlers (TEGLIntr)

The mouse is perhaps one of the most outlandish devices ever conceived as
an interface for computer system (at least in programming it). However, in
the world of GUI, the mouse is a mandatory device.

Programming for a mouse is a programmer's nightmare, simply because it
adds another level of interfacing. Conceptually, keyboard and mice do not
mix. As an example, the mouse is dependent on screen location and whether
the user had clicked the mouse at a specific location on the screen and
whether that location was on an icon. The keyboard, on the other hand, is
almost a direct path between pressing a key and executing a subroutine
(ie. 1f keypress then do something).

The programmer is required to write two separate routines for the same
function to handle this mix of interfaces. As well, some systems do not
have a mouse, so you cannot rely on the mouse pointer being available on
all systems.

TEGL Windows Toolkit, of course, provides an almost seamless integration
of the two devices. On systems without a mouse, TEGL will emulate the
mouse by using the cursor keys on the numeric keypad. On systems with a
mouse, the cursor keys may be used simultaneously to move the mouse cursor
around. A key may also be attached to an icon/event, having the same
effect as the mouse clicking on the icon.

Interrupts

The TEGLIntr unit is comprised of four captured interrupts: The keyboard
interrupt (int $09), the mouse subroutine interrupt (function 12), the
timer interrupt (int $08) and the control break handler (int $1B).

SwapTEGLIntrOff and SwapTEGLIntrON should be called just before
and after a call to Exec to restore and then to recapture interrupt
vectors.

SwapTEGLIntrOff Procedure TEGLINTR
Function

Restores all interrupts to the original saved vectors.
Declaration

SwapTEGLIntrOff
Remarks

All interrupts are
initially turned on.

Programmer's Reference Guide - 105 - TEGL Windows Toolkit

Chapter 6 - Mouse, Keyboard and Timer Handlers

See also
SwapTEGLIntrOn

SwapTEGLIntrOn Procedure TEGLINTR

Function

Saves and initialize the required TEGL interrupts.
Declaration

SwapTEGLIntrOn
Restrictions

SwapTEGLIntrOn cannot be called more then once in
succession, otherwise the system will hang.

See also
SwapTEGLIntrOn

Mouse Emulation

The mouse cursor is an internal function of the TEGL mouse unit, rather
than using the cursor provided by the mouse driver. This way a mouse
cursor is always available even on systems that do not have a mouse.

The support for the emulated mouse is identical, in all respects, to the
actual mouse driver.

In order to provide a seamless integration of the mouse and keyboard,

the Mouse function 12 interrupt $33 is used to capture the mouse hardware
interrupts, and keyboard interrupt $09 is used to capture key codes.
Since both are hardware interrupts, a KBMouseBusy flag is used to
serialize any conflict if both interrupts occurs at the same time.

The emulated mouse cursor is controled by the following primitives. They
may be used ONLY if the MouseShow flag is false, otherwise
you may find mouse droppings on the screen.

MCursorOff Procedure TEGLINTR

Function

Switches the Emulated Mouse Cursor off.
Declaration

MCursorOff
Restrictions

Programmer's Reference Guide - 106 - TEGL Windows Toolkit

Chapter 6 - Mouse, Keyboard and Timer Handlers

Use ONLY when MouseShow flag is False.
See also
MCursorOn, MSetPos

MCursorOn Procedure TEGLINTR
Function
Switches the Emulated Mouse Cursor on.
Declaration
MCursorOn (Xpos, Ypos : Word);
Remarks
Xpos, Ypos is the relative screen coordinates from
the upper left corner of 0,0.
Restrictions

Use ONLY when MouseShow flag is False.
See also
MCursorOff, MSetPos

MSetPos Procedure TEGLINTR
Function

Sets a new position for the Emulated Mouse Cursor.
Declaration

MSetPos (XPos, YPos: Word);
Remarks

Xpos, ypos is the relative screen coordinates from

the upper left corner of 0,0.
Restrictions

The emulated mouse cursor must be on before setting a
new position.

Use ONLY when MouseShow flag is False.

See also
MCursorOff, MCursorOn

Standard Mouse Functions

Programmer's Reference Guide - 107 - TEGL Windows Toolkit

Chapter 6 - Mouse, Keyboard and Timer Handlers

ShowMouse Procedure TEGLINTR

Function
Display a mouse cursor at current Mouse_Xcoord,
Mouse_Ycoord.
Declaration
ShowMouse;
See also
HideMouse, SetMousePosition, CursorShape

HideMouse Procedure TEGLINTR

Function
Hides mouse cursor.
Declaration
HideMouse
See also
ShowMouse, SetMousePosition, CursorShape

SetMousePosition Procedure TEGLINTR
Function
Sets x,y coordinates of mouse cursor.
Declaration
SetMousePosition (MouseX,MouseY : word)
Remarks

MouseX, MouseY are relative coordinates from the
upper left corner of the screen 0,0.

See also
ShowMouse, HideMouse, CursorShape

CursorShape Procedure TEGLINTR

Programmer's Reference Guide - 108 - TEGL Windows Toolkit

Chapter 6 - Mouse, Keyboard and Timer Handlers

Function
Sets the mouse cursor shape.

Declaration
CursorShape (Shape:Masktype)

Remarks
Sets the mouse cursor shape to the bit pattern
specified in Shape.
Masktype is predefined as follows:

type

MaskType = array[0..1, 0..15] of word;

The mouse shape is based on the underlying byte values contained in the
Shape array. The Shape array is 64 bytes long, with the first

32 bytes corresponding to a 16 by 16 screen mask, and the remaining 32
bytes corresponding to a 16 by 16 cursor mask. The first 32 bytes are
ANDed to the screen, followed by ORing the second 32 bytes

with the screen pixels to create the final mouse image.

For example the PointingHand Masktype is defined as a constant as
follows:

PointingHand: MaskType =
((SEL1FF, SE1FF, SE1FF, SE1FF, SE1ff, $SE000, SE000, $e000, { Screen Mask }
$0000,$0000,$0000,50000,50000,5%0000,50000,$0000),

($1E00,$1200,$1200,$1200,$1200,$13ff,$1249,$1249, { Cursor Mask }
$1249,$9001,$9001,$9001,$8001,$8001,$8001, SFFFF));

The resulting type is:

Screen Mask

1110000111111111 = SEIFF
1110000111111111 = SEIFF
1110000111111111 = SEIFF
1110000111111111 = SEIFF
1110000111111111 = SEIFF
1110000000000000 = SE100
1110000000000000 = SE100

1110000000000000 = SE100

Programmer's Reference Guide - 109 - TEGL Windows Toolkit

Chapter 6 - Mouse, Keyboard and Timer Handlers

0000000000000000 = 50000
0000000000000000 = 50000
0000000000000000 = 50000
0000000000000000 = 50000
0000000000000000 = 50000
0000000000000000 = 50000
0000000000000000 = 50000
0000000000000000 = 50000

Cursor Mask

0001111000000000 = S$S1E00
0001001000000000 = $1200
0001001000000000 = $1200
0001001000000000 = $1200
0001001000000000 = $1200
0001001111111111 = S13FF
0001001001001001 = $1249
0001001001001001 = $1249
0001001001001001 = $1249
1001000000000001 = $9001
1001000000000001 = $9001
1000000000000001 = $8001
1000000000000001 = $8001
1000000000000001 = $8001
1000000000000001 = $8001
1111111111111111 = SFFFF

There are 5 masktype constants defined in the TEGLIntr unit. They
are: Pointing Hand, HourGlass, Standard, DiagCross, and CheckMark.

See also
ShowMouse, HideMouse, SetMouseHotSpot

SetMouseHotSpot Procedure TEGLINTR

Function
Sets the cursor hot-spot values relative to the
upper-left corner of the mouse cursor image.
Declaration
SetMouseHotSpot (x,y : word)
Remarks
X, y are relative coordinates from the upper left
corner of the mouse cursor image 0,0.

Programmer's Reference Guide - 110 - TEGL Windows Toolkit

Chapter 6 - Mouse, Keyboard and Timer Handlers

See also
CursorShape

SetMouseColor Procedure TEGLINTR

Function

Sets the mouse cursor color.
Declaration

SetMouseColor (Color:word)
Remarks

Sets the current Mouse Cursor Color to Color.

Available colors are defined in the Graph Unit.
See also

CursorShape

MousePosition function TEGLINTR

Function
Gets the Mouse Cursor coordinates and button
information.

Declaration
MousePosition (VAR MouseX,MouseY : Word) : Word;

Result type
Returns the mouse button status. Left button - 1, Right
button - 2, both buttons - 3.
Remarks
MouseX,MouseY are relative coordinates from the
upper left corner of the screen (0,0).

This function is no longer required in version 2.00,
since the the information above are provided in the
global variables Mouse_XCoord, Mouse_YCoord and
Mouse_Buttons respectively.

See also
GetButtonReleaseInfo, GetButtonPressInfo,
ClearButtonInfo

Example

Programmer's Reference Guide - 111 - TEGL Windows Toolkit

Chapter 6 - Mouse, Keyboard and Timer Handlers

VAR mp, X,y : Word;

mp := MousePosition (x,vVy);
IF Integer (mp) = -3 THEN { -- Both buttons down }
BEGIN
END;
GetButtonReleaseInfo Procedure TEGLINTR
Function
Gets the Mouse Cursor button release information.
Declaration
GetButtonReleaselInfo (Button:word; VAR ButtonStat,
ButtonRelease, Xpos, Ypos:word)
Remarks

See also

Button specifies for which button information is
required.

ButtonStat is the current button status
information.

ButtonRelease is the number of times the button
has been released.

Xpos, Ypos specifies the coordinates where the
button was last released.

The information is reset back to zero after the
information has been read.

MousePosition, GetButtonPressInfo,
ClearButtonInfo

GetButtonPressInfo

Procedure TEGLINTR

Function

Declaration

Gets the Mouse Cursor button press information.

Programmer's Reference Guide - 112 - TEGL Windows Toolkit

Chapter 6 - Mouse, Keyboard and Timer Handlers

GetButtonPressInfo (Button : word; VAR ButtonStat,
ButtonRelease, Xpos, Ypos:word)
Remarks
Button specifies for which button information is
required.

ButtonStat is the current button status
information.

ButtonPress is the number of times the button has
been pressed.

Xpos, Ypos specifies the coordinates where the
button was last pressed.

The information is reset back to zero after the
information has been read.

See also
MousePosition, GetButtonReleaselnfo,
ClearButtonInfo

ClearButtonInfo Procedure TEGLINTR

Function

Clears the Mouse button info counters.
Declaration

ClearButtonInfo;
See also

GetButtonReleaseInfo, GetButtonPressInfo

SetMouseMinMax Procedure TEGLINTR
Function

Sets the Mouse Cursor minimum and maximum coordinates.
Declaration

SetMouseMinMax (MinX,MinY, MaxX,MaxY:word)
Remarks

MinX, MinY are the minimum relative coordinates
that the mouse may travel. MaxX, MaxY are the
maximum relative coordinates that the mouse may travel.

Programmer's Reference Guide - 113 - TEGL Windows Toolkit

Chapter 6 - Mouse, Keyboard and Timer Handlers

See also
SetMousePosition

FrozenMouse Procedure TEGLINTR

Function
Prevents the mouse from moving when updating the
screen.

Declaration
FrozenMouse

Remarks
Certain EGA registers cannot be read reliably. Rather
then attempting to read and restore the register with
each movement of the mouse, it is more economical to
simply freeze the mouse, while the screen is being
updated.

FrozenMouse retains a counter on the number of times
the mouse is frozen. In order to unfreeze the mouse,
the same number of UnFreeze calls must be made.
Restrictions
FrozenMouse may be used if the screen update is
temporary (ie. XorBox), or the second EGA page is being
updated. Care must be taken that the mouse cursor is
not overlapping the updated area, otherwise mouse
droppings may result.
See also
FreezeMouse, UnFreezeMouse

FreezeMouse function TEGLINTR

Function
Prevents the mouse from moving or being overwritten
when updating the screen.

Declaration
FreezeMouse (x,y,x1,yl:word)

Result type

Programmer's Reference Guide - 114 - TEGL Windows Toolkit

Chapter 6 - Mouse, Keyboard and Timer Handlers

Returns the last MouseShow status.

Remarks
Certain EGA registers cannot be read reliably. Rather
then attempting to read and restore the register with
each movement of the mouse, it is more economical to
simply freeze the mouse, while the screen is being
updated.

FreezeMouse differs from FrozenMouse in that

a check is made on whether the mouse cursor overlaps
the updated area. If the mouse cursor overlaps the
update area, the mouse is hidden until UnFreeze
displays the mouse.

FreezeMouse also retains a counter on the number

of times the mouse is frozen. In order to unfreeze the
mouse, the same number of UnFreeze calls must be

made.

Restrictions
FrozenMouse may be used if the screen update is
temporary (ie. XorBox), or if the second EGA video page
is being updated.

See also

FrozenMouse, UnFreezeMouse

UnFreezeMouse Procedure TEGLINTR
Function

Releases the mouse from a frozen or freeze status.
Declaration

UnFreezeMouse (Mshow:boolean)
Remarks

Mshow is the mouse show status returned from
FreezeMouse, or use the global MouseShow flag if
FrozenMouse was called.

FreezeMouse and FrozenMouse retain a counter
on the number of times the mouse is frozen. In order to
unfreeze the mouse, the same number of UnFreeze
calls must be made.
See also
FrozenMouse, FreezeMouse

Programmer's Reference Guide - 115 - TEGL Windows Toolkit

Chapter 6 - Mouse, Keyboard and Timer Handlers

SetMouseSensitivity Procedure TEGLINTR
Function

Sets the mouse-to-cursor movement sensitivity.
Declaration

SetMouseSensitivity (Xsense, Ysense, Threshold:

word)
Remarks

Xsense defines the horizontal movement
sensitivity.

Ysense defines the vertical movement sensitivity.

The sensitivity numbers range from 1 through 100, where
50 specifies the default mickey factor of 1. The
mouse-to-cursor movement is more sensitive at higher
numbers.

The threshold parameter sets the ratio at which
the mouse-to-cursor movement is doubled. This range of
this parameter is also 1 through 100. The lower the
threshold, the more sensitive the mouse.

See also
GetMouseSensitivity

GetMouseSensitivity Procedure TEGLINTR

Function
Returns the mouse-to-cursor movement sensitivity
scaling factors previously set by SetMouseSensitivty.
Declaration
GetMouseSensitivity (VAR Xsense, Ysense,
Threshold:word)
Remarks
Xsense defines the horizontal movement
sensitivity.

Ysense defines the vertical movement sensitivity.
The sensitivity numbers range from 1 through 100, where

50 specifies the default mickey factor of 1. The
mouse-to-cursor movement is more sensitive at higher

Programmer's Reference Guide - 116 - TEGL Windows Toolkit

Chapter 6 - Mouse, Keyboard and Timer Handlers
numbers.

The threshold parameter is the ratio at which the
mouse-to-cursor movement is doubled. This range of this
parameter is also 1 through 100. The lower the
threshold, the more sensitive the mouse.

See also
SetMouseSensitivity

SetKeyBoardMouse Procedure TEGLINTR
Function
Toggles the keyboard mouse on or off.
Declaration
SetKeyBoardMouse (ON_OFF : boolean)
Remarks
The cursor keys leftarrow downarrow uparrow
rightarrow, on the keyboard, may be used to emulate
the mouse movements. SetKeyBoardMouse (FALSE)
will turn off the emulation, to allow GetCh to
retrieve the keycode.
Restrictions

SetKeyBoardMouse will have no effect on TEGL's
keyboard events, (ie. the cursor keys may be assigned
functions by means of AddCaptureKey), which will
have priority over the keyboard mouse.

See also
SetKBSteps, GetKBSteps

SetKBSteps Procedure TEGLINTR
Function
Sets the amount of pixel movement with each cursor key
press.
Declaration
SetKBSteps (xsteps, ysteps, sfxsteps,sfysteps:
word)
Remarks

xsteps, ysteps are the positive incremental wvalues

Programmer's Reference Guide - 117 - TEGL Windows Toolkit

Chapter 6 - Mouse, Keyboard and Timer Handlers

Restrictions

See also

for moving the mouse cursor to the next position.
Initial values are (x=12,y=8).

sfxsteps, sfysteps are the positive incremental

value for moving the mouse cursor to the next position
when using the shiftkey in conjunction with the
leftarrow downarrow uparrow rightarrow keys.

Initial values are (x=2,y=1).

SetKBSteps will have no effect on TEGL's keyboard
events, (ie. the cursor keys may be assigned functions
by means of AddCaptureKey), which will have

priority over the keyboard mouse.

SetKeyBoardMouse, GetKBSteps

GetKBSteps Procedure TEGLINTR

Function

Declaration

Remarks

See also

Timer Functions

Returns the pixel movement value set for the keyboard
mouse.

GetKBSteps (xsteps, ysteps, sfxsteps, sfysteps:
word)

xsteps, ysteps are the positive horizontal and
vertical step increments.

sfxsteps, sfysteps are the positive horizontal and
vertical step increments when using the shiftkey in
conjunction with the leftarrow downarrow uparrow
rightarrow keys.

SetKeyBoardMouse, SetKBSteps

A timer tick has the standard resolution of interrupting any process

within the system,

18 times a second. TEGL Windows uses the captured

timer interrupt to decrement counters and set a flag when the counter is
zero. TEGLSupervisor monitors the status of the flag and calls the
attached event when the flag is set. Thus timed events are processed
outside the critical timer tick interrupt.

Programmer's Reference Guide - 118 - TEGL Windows Toolkit

Chapter 6 - Mouse, Keyboard and Timer Handlers

Timer events may be used as clocks, background tasks, print spoolers etc.

SwapTimerOut Procedure TEGLINTR
Function
Restores the original timer vectors.
Declaration
SwapTimerOut
Remarks
Use SwapTimerOut if you need to turn the timer
off.
See also
SwapTimerIn
SwapTimerIn Procedure TEGLINTR

Function
Captures the original timer vectors and sets the
interrupt vectors to point at TEGL's timer function.
Declaration
SwapTimerIn
Remarks
The timer interrupt is originally swapped in.
Restrictions

SwapTimerIn cannot be called more then once in

succession, otherwise the system will hang.
See also

SwapTimerIn

SetTimerStart Procedure TEGLINTR

Function
Sets the timer value of timepiece counter.
Declaration

Programmer's Reference Guide - 119 - TEGL Windows Toolkit

Chapter 6 - Mouse, Keyboard and Timer Handlers

SetTimerStart (VAR Timepiece : TimeRecPtr;
Timeset: Word)
Remarks
Timepiece is of the type TimeRecPtr. If
Timepiece is set to Nil, a timepiece record is
created and initialized to timeset.

Timeset is a word value counter. A value of 18 is
equivalent of 1 second.

See also
ResetTimerFlag

ResetTimerFlag Procedure TEGLINTR

Function
Resets the flag that indicates the completion of a
cycle. A cycle is when the counter reaches zero and is
reset back to its original wvalue.

Declaration
ResetTimerFlag (Timepiece:TimeRecPtr)

Remarks

Timepiece is of the type TimeRecPtr.

timepiece is created by SetTimerStart.
See also

SetTimerStart

DropTimerCount Procedure TEGLINTR

Function
Deletes a timepiece record from the timer event
chain.

Declaration
DropTimerCount (Timepiece : TimeRecPtr)

Remarks

Timepiece is of the type TimeRecPtr.

Timepiece is created by SetTimerStart.
See also

SetTimerStart

Programmer's Reference Guide - 120 - TEGL Windows Toolkit

Chapter 6 - Mouse, Keyboard and Timer Handlers

TimerSwtich Procedure TEGLINTR
Function
Toggles the timer handler on or off.
Declaration
TimerSwitch (onoff:boolean)
Remarks

onoff sets the status on whether the timer event
chain is scanned and decremented. A boolean value of
FALSE stops the counters from being decremented. A
boolean value of TRUE resets the counters back to
their original wvalues and causes the counters within
the timer event chain to be decremented 18 times a
second.

TimerSwitch does not remove the timer interrupt
vectors.

See also
SwapTimerOut, SwapTimerIn

Keyboard Interrupt Events

There are two levels at which the keyboard interrupt may be used. At the
higher Keyboard Event level (monitored by the TEGLSupervisor),

complete events, like swapping rotating windows, may be attached to a key
on the keyboard. However, at the lower level setting the keycall
parameter in AddCaptureKey to point at a key handler allows low level
functions like positioning the mouse cursor to be performed.

A good example of a key handler is the default mouse click handler.

The enterkey is used to automatically position the mouse cursor on the
first defined mouse click area and simulates the holding down of the mouse
right button, until the key is released.

The higher Keyboard Event level is set with a call to
DefinelocalKeyClickArea and DefineGlobalKeyClickArea within

TEGLUnit. The keycall parameter in AddCaptureKey is set to
NilKeyCallProc. Instead of calling an external callproc, the keys are
stacked in a keyboard buffer that is monitored by the TEGLSupervisor.

This TEGL keyboard buffer is separate from the normal keyboard buffer. The
TEGLKeyPressed and TEGLReadKey functions are provided to check
and read captured keys.

Note: The keyboard handler uses scan codes rather then translated Ascii

Programmer's Reference Guide - 121 - TEGL Windows Toolkit

Chapter 6 - Mouse, Keyboard and Timer Handlers

codes.

Keyboard Scan Codes

501 esckey $20 key D $40 key Fo6
$02 key lkey ! $21 key F $41 key F7
$03 key 2key @ $22 key G $42 key F8
$04 key 3key # $23 key H $43 key F9
$05 key 4key $ $24 key J $44 f10
506 key 5key % $25 key K $45 numlock
507 key b6key ° $26 key L $46 scrlock
508 key Tkey & $27 ; $47 homekey key 7
509 key 8key * s28 ' " $48 uparrow key 8
SO0A key 9key ($29 ° -~ $49 pgupkey key 9
$SO0B key Okey) $2A shiftkey Left $4A key -
S0C {key -} _ $2B {key } S4B {leftarrow} {key 4}
S0D key =key + $2C key 7Z $4C key 5
SOE backspace $2D key X $4D rightarrow key 6
SOF forwtabbacktab S2E key C S4E key +
$10 key Q $2F key V $4F endkey key 1
$11 key W $30 key B $50 downarrow key 2
$12 key E $31 key N $51 pgdnkey key 3
$13 key R $32 key M $52 inskey key 0
$14 key T $33 key ,key < $53 delkey key
$15 key Y $34 key .key > $54 sysreq
$16 key U $35 key /key ? $85 bigfrontFllkeyback
$17 key I $36 shiftkey Right $86 bigfrontFl2keyback
$18 key O $37 prtsckeykey *
$19 key P $38 altkey
S1A [{ $39 {spacebar}
S1B 1 } S3A {capslock}
$1C enterkey $3B key F1
$1D ctrlkey $3C key F2
$1E key A $3D key F3
$1F key S $3E key F4
_ $3F key F5
AddCaptureKey Procedure TEGLINTR
Function
Adds a keyboard scancode to the keyboard handler for
capturing, or for processing immediately when the key
is pressed.
Declaration

AddCaptureKey (Keycode:word; Repeatkey:Koolean;

Programmer's Reference Guide - 122 - TEGL Windows Toolkit

Remarks

See also

Chapter 6 - Mouse, Keyboard and Timer Handlers

Keycall:keybrdcallproc)

Keycode is the scan code of the keys on the

keyboard. This is different from the ascii code that is
usually translated and passed by DOS. Use the scancode
value listed in the scancode table.

Repeatkey is set to TRUE if the key is
expected to repeat. False if the key must be
released before generating another interrupt.

Keycall is the key call procedure when the
keyboard handler captures the key. If keycall is
set to NilKeyCallProc the scancode of the capture
key is added to the TEGL keyboard buffer.

AddCaptureKey can stack the same scan code any
number of times, however, only the most recent entry in

the Scancode chain is used.

DeleteCaptureKey

DeleteCaptureKey Procedure TEGLINTR

Function

Declaration

Remarks

See also

Removes a keyboard scancode from the keyboard scancode
chain.

DeleteCaptureKey (Keycode : Word)
Keycode is the scan code of the keys on the
keyboard. This is different from the ascii code that is

usually translated and passed by DOS.

If the same scan code i1s stacked more then once the
most recent entry in the Scancode chain is deleted.

AddCaptureKey

TEGLReadkey Function TEGLINTR

Programmer's Reference Guide - 123 - TEGL Windows Toolkit

Chapter 6 - Mouse, Keyboard and Timer Handlers

Function
Reads a scan code from the TEGL keyboard buffer.
Declaration
TEGLReadkey
Result type
Returns the first captured scan code in the TEGL
keyboard buffer.
Restrictions
Use TEGLKeyPressed to check if any scan codes are
in the TEGL keyboard buffer.
See also
TEGLKeyPressed

TEGLKeyPressed Function TEGLINTR

Function
Returns True if a scan code is captured; False
otherwise.
Declaration
TEGLKeyPressed
Result type
Boolean

Remarks

The scan code is added to the TEGL keyboard buffer.
See also

TEGLReadKey

NilKeyCallProc Function TEGLINTR

Function
Dummy function to use a place holder.
Declaration
NillKeyCallProc
Returns
Boolean.
Remarks

This function always returns false.
See also
AddCaptureKey.

Programmer's Reference Guide - 124 - TEGL Windows Toolkit

Chapter 6 - Mouse, Keyboard and Timer Handlers

Keyboard Miscellaneous

SetShiftKeys Procedure TEGLINTR
Function
Toggles the Shift flags on/off.
Declaration
SetShiftKeys (ShiftFlag:byte; OnOff:boolean)
Remarks
Shiftflag may be one of the types as follows:
TYPE
Sk_RightShift = $01;
Sk_Leftshift = $02;
Sk_Ctrlshift = $04;
Sk_Altshift = $08;

Sk_ScrollLock = $10;

Sk_NumLock = $20;
Sk_CapsLock = $40;
Sk_InsLock = $80;

OnOff sets the above bits to on True or off
False.
Show Button Status

The TEGL.PAS demonstration program uses the DEBUGUNT.PAS unit to
display the mouse button status through a menu selection.

ShowButtonStatus Event FONTTEST

Function
An Event that displays the mouse button status.

Remarks
Information is displayed on the number of times the
mouse buttons have been pressed and released. Shows the
last coordinates where the mouse button was pressed and

Programmer's Reference Guide - 125 - TEGL Windows Toolkit

Chapter 6 - Mouse, Keyboard and Timer Handlers

the coordinates where the mouse button was released.

Programmer's Reference Guide - 126 - TEGL Windows Toolkit

Chapter 7 - Assembly Language Graphics

Assembler Graphics

The FASTGRPH unit is the engine that provides the speed that is seen
in the TEGL Windows Toolkit. Most of the graphics tools are written in
assembler, with some of the noncritical support routines written in
Pascal.

Between the FASTGRPH and TGRAPH units programs can be made that
require no other graphic support.

Graphics primitives are accessed through procedural pointers. When a
graphics mode is selected (EGA640x350x16 etc...) the pointers are
initialized point at the correct support routines. Graphics primitives
cannot be called before a graphics mode is selected. If they are called
then the program will probably crash severely and a reset may be required.

Setting Video Modes

The following Types and Consts relate to detecting and selecting wvideo
modes.

The VidID type is passed as a parameter to VideoID to determine the
graphics equipment available.

VidID = RECORD

VideoOType : Byte;

DisplayOType : Byte;

VideolType : Byte;

DisplaylType : Byte;
END;

The graphics adaptor card detected is returned in the VideoOType field.
Here are a list of the Constants and values and whether they are
currently supported by the toolkit.

TG_None = 500; no graphics adaptor

TG_MDA = $01; monochome display, not supported

TG_CGA = 502; Color graphics, supported

TG_EGA = $03; Enhanced graphics, supported

TG_MCGA = 504; Multicolor graphics array, not supported
TG_VGA = 505; Video graphics array, not supported
TG_HGC = $80; Hercules graphics, supported

TG_HGCPlus= $81; Hercules plus, not supported

TG_InColor= $82; Hercules incolor, no supported

Programmer's Reference Guide - 127 - TEGL Windows Toolkit

Chapter 7 - Assembly Language Graphics

CGA640x200x2 Procedure FASTGRPH
Function

Sets the video mode to 640 x 200 in 2 colors.
Declaration

CGA640x200x2
Remarks

This procedure switches to graphics mode and sets the
pointers for the graphics primitives.

See also
Herc720x348x2, EGA640x350x16, VGA640x480x16.

EGA640x350x16 Procedure FASTGRPH
Function

Sets the video mode to 640 x 350 in 16 colors.
Declaration

EGA640x350x16
Remarks

See also
VGA640x480x16, Graph Unit

Herc720x200x2 Procedure FASTGRPH
Function

Sets the video mode to 720 x 200 in 2 colors.
Declaration

Herc720x348x2
Remarks

This procedure switches to graphics mode and sets the
pointers for the graphics primitives.

See also
CGA640x200x2, EGA640x350x16, VGA640x480x16.

Programmer's Reference Guide - 128 - TEGL Windows Toolkit

Chapter 7 - Assembly Language Graphics

SetVideoChoices FASTGRPH
Function
Sets the allowable video modes.
Declaration
SetVideoChoices (VMode : Word; Accept : Boolean);
Remarks

By default all video modes are acceptable. Certain
programs may not support all video modes.

See also
VideoID, VideoAutoDetect.

Example
This statement would cause the program to abort if
it were run on a machine which only supported CGA
graphics.

SetVideoChoices (TG_CGA, FALSE) ;

SVGA800x600x16 FASTGRPH
Function

Sets the video mode to 800 x 600 in 2 colors.
Declaration

SVGAB800x600x16;
Remarks

Requires hardware and screen that provide super VGA
resolutions.
See also
CGA640x200x2, EGA640x350x16, Herc720x348x2,
VGA640x480x16

VGA640x480x16 Procedure FASTGRPH

Programmer's Reference Guide - 129 - TEGL Windows Toolkit

Function

Declaration

Remarks

Restrictions

See also

Chapter 7 - Assembly Language Graphics

Sets the video mode to 640 x 480 in 16 colors.
VGA640x480x16

This procedure switches to graphics mode and sets the
pointers for the graphics primitives.

Requires a VGA card and monitor.

CGA640x200x2, EGA640x350x16, Herc720x348x2.

VideoAutoDetect FASTGRPH
Function
Detects the graphics equipment and switches to graphics
mode if available.
Declaration
VideoAutoDetect;
Remarks

See also

Selects the highest resolution that is available and
supported.

The global variable InitDriverCode can be
examinded to determine the video mode set.

VideoID

VideolID FASTGRPH
Function
Detects the graphics equipment available.
Declaration
VideoID (VAR v vVidiID) ;
Remarks

Graphics equipment is only detected. The current
video mode is not changed.

Programmer's Reference Guide - 130 - TEGL Windows Toolkit

Chapter 7 - Assembly Language Graphics

Graphic Primitives

Turbo Pascal offers a rich set of graphics commands, that work with almost
any video display. However, the drawback to the flexibility of Turbo
Pascal's BGI Graphics is the speed at which the graphics are displayed.

To provide a toolset that could operate quickly, the following assembler
graphic routines were written to replace the ones offered by TP.

Other then the documented restrictions you may freely mix and match
Turbo's graphic routines with TEGL's.

The following constants are defined in the FASTGRPH unit and may be
assigned to RMWBITS to define the type of binary operation between
each byte in the line and the corresponding bytes on the screen.

VAR
RMWBITS : WORD;
TYPE
FGNORM = 0;
FGAND = $08;
FGOR = $10;
FGXOR = $18;
FGNOT = $80;
FastLine Procedure FASTGRPH
Function
Draws a line from (x,y) to (x1,y2).
Declaration
FastLine (x,y,x1,y2,n:word)
Remarks

Sets the global variable RMWBITS to the
appropriate mode for drawing the line.

X,y specifies the line starting coordinates.
x1,yl specifies the line ending coordinates.

n specifies the color of the line.

Programmer's Reference Guide - 131 - TEGL Windows Toolkit

Chapter 7 - Assembly Language Graphics

Fastline will only draw a continuous line.
SetLineStyle, SetColor and SetWriteMode has no
effect on Fastline.

See also
Turbo Pascal Reference Manual sh Line

Putpixs Procedure FASTGRPH
Function
Plots a pixel at x,vy.
Declaration
PutPixs (x,y,n:word)
Remarks

Plots a point in the color defined by n at (x,vy).

Set the global variable RMWBITS to the appropriate
mode for plotting the pixel.

Putpixs replaces the PutPixel routine in the Graph
Unit.
See also
Getpixs, Turbo Pascal Reference Manual sh
PutPixel

Getpixs Function FASTGRPH

Function
Return the pixel value at x,vy.
Declaration
Getpixs (x,y:word)
Result type
Word.
Remarks
Gets the pixel color at (x,Vy).

Getpixs replaces the GetPixel routine in the Graph
Unit.
See also
Putpixs, Turbo Pascal Reference Manual sh
GetPixel

Programmer's Reference Guide - 132 - TEGL Windows Toolkit

Chapter 7 - Assembly Language Graphics

Getbiti Procedure

FASTGRPH

Function

Declaration

Remarks

Restrictons

See also

Copies the specified screen image into a buffer.
Getbiti (x,y,x1,yl:word;buffer:pointer)
Xx,y,x1,yl defines a rectangular region on the screen.

buffer is a memory area that may be allocated by
GetMem or TEGLGetMem.

Getbiti replaces the GetImage routine in the Graph
Unit. By using TEGLGetmem with BigImageSize,
Getbiti will allow saving of images larger than 64k.

The saved image structure of Getbiti and
Putbiti is different than what Turbo Pascal's
GetImage and PutImage use.

Putbiti, BigImageSize

Putbiti Procedure

FASTGRPH

Function

Declaration

Remarks

Copies the buffer to the specified screen area.
Putbiti(x,y : word; buffer : pointer; RMWbits : word)

x,y defines the upper left corner of the screen
area for placing the saved image.

buffer is the image buffer that contains a copy of
the screen image saved previously by Getbiti.

RMWbits defines the type of binary operation
between the saved image and the corresponding bytes on
the screen.

Programmer's Reference Guide - 133 - TEGL Windows Toolkit

Chapter 7 - Assembly Language Graphics

Restrictons

See also

Putbiti replaces the PutImage routine in the Graph
Unit. By using TEGLGetmem with BigImageSize,
Putbiti will allow the saving and restoring of
images larger then 64k.

The saved image structure of Getbiti and
Putbiti is different than what Turbo Pascal's
GetImage and PutImage use.

Getbiti, BigImageSize

BigImageSize Function FASTGRPH

Function
Declaration
Result type

Remarks

See also

Calculates the size of the image buffer.
BigImageSize (x,y,x1,yl:word) : LongInt
Longint.

x,y,x1,yl defines the rectangular coordinates that
will be used for Getbiti.

BigImageSize replaces Turbo Pascal's
ImageSize routine. By using TEGLGetmem with

BigImageSize, image buffers may be larger then 64k.

Getbiti, Putbiti

SetAPage Procedure

FASTGRPH

Function

Declaration

Remarks

Sets the active page for graphics output.
SetAPage (pagenum:word)
Makes pagenum the active graphics page. All output,

including those from Turbo Pascal's graphics routines,
will be directed to pagenum.

Programmer's Reference Guide - 134 - TEGL Windows Toolkit

Chapter 7 - Assembly Language Graphics

Only two pages are supported with the EGA's
640 x 350 x 16 mode.

SetAPage replaces the Turbo Pascal's
SetActivePage procedure.

See also
SetVPage, FlipAPage, FlipVPage, VideoPage

SetVPage Procedure FASTGRPH
Function
Sets the visual graphics page number.
Declaration
SetVPage (pagenum:word)
Remarks

Makes pagenum the visual graphics page. All output,
including that from Turbo Pascals's graphics routines,
will still be directed to the active pagenum.

Only two pages are supported with the EGA's
640 x 350 x 16 mode.

SetVPage replaces the TP's SetVisualPage
procedure.

See also
SetAPage, FlipAPage, FlipVPage, VideoPage

FlipAPage Procedure FASTGRPH

Function

Flips the active page to the alternate page.

Declaration

FlipAPage

Remarks
Makes the alternate page the active graphics page. All
output, including that from Turbo Pascal's graphics
routines, will be directed to the new active page.

Only two pages are supported with the EGA's 640 x 350 x

Programmer's Reference Guide - 135 - TEGL Windows Toolkit

Cha

See also

pter 7 - Assembly Language Graphics

16 mode. If the current active page is (1
FlipAPage will set the active page to (2)
is true, i1if the current active page is (2

),
).

The reverse

FlipAPage does not have an equivalent in the
Graph Unit.

SetAPage, SetVPage, FlipVPage, VideoPage

FlipVPage Procedure

FASTGRPH

Function

Declaration

Remarks

See also

Flips the visual page to the alternate page.

FlipVPage

Makes the alternate page the visual graphics page.

Only two pages are supported with EGA's 640 x 350 x 16.
If the current visual page is (1), FlipVPage will

set the visual page to (2). The reverse is true, if the

current visual page is (2).

FlipVPage does not have an equivalent in the
Graph Unit.

SetAPage, SetVPage, FlipAPage, VideoPage

VideoPage Function

FASTGRPH

Function
Declaration
Result type

Remarks

Returns the current Visual page.
VideoPage

Word.

Returns the current visual graphics page.

Only two pages are supported with the EGA's

Programmer's Reference Guide - 136 - TEGL Windows Toolkit

Chapter 7 - Assembly Language Graphics
640 x 350 x 16 mode.

VideoPage does not have an equivalent in the
Graph Unit.

See also
SetAPage, SetVPage, FlipAPage, FlipVPage

New Graphic Primitives

The TEGL Windows Tookit's ability to display fast graphics is, in a way,
just the tip of the iceberg. The following routines provide functions to
extract and overlay buffered images before displaying the final results on
the screen.

Some of these routines may be used to create a virtual image (an image
larger then the size of the screen). The only limitation at this time is
the need for graphic primitives that will draw to a buffered image.

Extractpixs Function FASTGRPH

Function
Return the pixel value at x,y within an image
buffer.

Declaration
Extractpixs (x,y:word; buffer:pointer)

Result type

Word
Remarks
Gets the pixel color at (x,y) within the saved
image buffer.
ExtractIMG Procedure FASTGRPH
Function
Extracts an image area Xx,y,x1l,yl from buff2
to buffl.
Declaration

ExtractIMG(x,vy,x1,yl:word;buffl,buff2:pointer)

Programmer's Reference Guide - 137 - TEGL Windows Toolkit

Chapter 7 - Assembly Language Graphics

Remarks

Returns a partial image in buffl from buff2.
See also

OverlayIMG, PutBiti, GetBiti

OverlayIMG Procedure FASTGRPH
Function
Overlays image buffl to buff2 at x,y
offsets.
Declaration
OverlayIMG (x,y:word;buffl,buff2:pointer)
Remarks

Overlays an image in buffl to buff2.
See also
ExtractIMG, PutBiti, GetBiti

SwapBytes Procedure FASTGRPH
Function

Swaps two buffers.
Declaration

SwapBytes (buffl,buff2:pointer; bytestoswap:longint)
Remarks

Swaps the images within buffl with buff2.

Graphic Derivatives

The following are some fast common routines to create XOR boxes that
can be erased simply by calling the routine again.

XORing pixels to the screen has the unique feature that when the same
pixel is XORed to the same location a second time the pixel is restored to
it's original look.

The XOR box routines here allow boxes to flit and dance across the screen

Programmer's Reference Guide - 138 - TEGL Windows Toolkit

Chapter 7 - Assembly Language Graphics

without (if used correctly) changing any of the underlying display.

XORCornerBox Procedure FASTGRPH
Function
Creates box corners only.
Declaration
XORCornerBox (x,y,x1,yl,color : integer)
Remarks

x,y,x1,yl are the coordinates of a rectangle.

This routine is used in Ziptobox and Zipfrombox
to create the shrinking and expanding corner images.

XORBox Procedure

FASTGRPH

Function
Declaration

Remarks

Icon Graphics

Draws a (xor) rectangle.

XORBox (x,vy,x1,yl,color : integer)

(x,y) define the upper left corner of a rectangle,
and (x1,vy1l) define the lower right corner.

Coordinates must be within the physical screen.

This routine i1s used in MoveFrame to move an (xXor)
box image around.

Putpict Procedure

FASTGRPH

Function

Puts an icon to a specified screen area.

Programmer's Reference Guide - 139 - TEGL Windows Toolkit

Chapter 7 - Assembly Language Graphics

Declaration

Remarks

Restrictions

See also

Putpict (x,y:word; buf:pointer;n:word)

x,y defines the upper left corner of the screen
area for placing the icon image.

buf points to the icon image.

n is the default color for any pixel that is
black within the icon.

Icons are stored in a unique fashion, these are not

bit images in the conventional sense. Icons are created
and maintained using the Icon Editor and support
programs.

PictSize, Icon Editor.

PictSize Procedure

FASTGRPH

Function

Declaration

Remarks

See also

Gets the width and height in pixels of an icon image.
PictSize (VAR Width,Height: Word; Buffer: Pointer);
Buffer must point to a valid icon image.

PutPict, Icon Editor.

Abort Procedure

FASTGRPH

Function

Declaration

Remarks

Closes the graphics system and displays the message
string.

Abort (Msg : string)
This routine is defined in Fastgrph because of the

need for closing the graphics system and returning to
text mode before the message can be displayed.

Programmer's Reference Guide - 140 - TEGL Windows Toolkit

Chapter 7 - Assembly Language Graphics

Programmer's Reference Guide - 141 - TEGL Windows Toolkit

Chapter 8 - Special Effects

Special Effects

The TEGLGrph unit has a nice collection of graphic effects that may
be used to create 3D characters, shadow boxes, long icon buttons, etc..

These routines may be combined with Turbo Pascal's BGI fonts and graphics for ev
more effects.

We suggest that if you build other graphic effects they should support a
standard parameter list. Specifically coordinates should be ordered

X, y, x1, y where x, y are the upper left coordinates and

x1, yl are the lower right coordinates of an area on the screen.

Screen Backdrop
The backdrop is normally the full physical screen filled with a color and
pattern to give the effect of a mat. On this mat we place icons and open

up windows. It's like the velvet mat a Jeweler uses to show off gem stones.

The backdrop does not require a window frame to draw on.

ClearTEGLScreen Procedure TEGLGRPH
Function
Clears the screen to the backdrop pattern.
Declaration
ClearTEGLScreen
Remarks
Fills the complete screen using the bitmask found in
TEGLBackPattern or TEGLFillStyle with the
background color of TEGLBackColor. Completes the
clearing by placing a border if TEGLBorderShow is
TRUE in the color of TEGLBorderColor.
The default is a gray matted area with white borders.
Restrictions

Must be in Graphics mode.

See also
SetTEGLBorderShow, SetTEGLBackColor,
SetTEGLBorderColor, SetTEGLFillPattern,
SetTEGLFillStyle

Example

Programmer's Reference Guide - 142 - TEGL Windows Toolkit

Chapter 8 - Special Effects

EGA640x350x16; { -- Sets the graphics mode }
SetMouseMinMax (0, 0, GetMaxX, GetMaxY¥) ;
ClearTEGLScreen;
SetTEGLBorderShow Procedure TEGLGRPH
Function
Sets the switch on whether a border should be drawn or
not drawn after the bar fill.
Declaration
SetTEGLBorderShow (BorderShow:boolean)
Remarks
Switches the border on=TRUE or off=FALSE when
TEGLClearScreen is called.
The default is on TRUE.
Restrictions

Must be called before calling TEGLClearScreen.
See also
TEGLClearScreen, SetTEGLBackColor,
SetTEGLBorderColor, SetTEGLFillPattern,
SetTEGLFillStyle
Example

SetTEGLBorderShow (FALSE) ;

ClearTEGLScreen;
SetTEGLBackColor Procedure TEGLGRPH
Function
Sets the color of the backdrop.
Declaration

SetTEGLBackColor (BackColor:word)
Remarks

Programmer's Reference Guide - 143 - TEGL Windows Toolkit

Chapter 8 - Special Effects

Sets the background color for the backdrop to
BackColor.

The default is WHITE.
Restrictions
Must be called before calling TEGLClearScreen.
See also
TEGLClearScreen, SetTEGLBorderShow,
SetTEGLBorderColor, SetTEGLFillPattern,
SetTEGLFillStyle
Example

SetTEGLBackColor (GREEN) ;

ClearTEGLScreen;
SetTEGLBorderColor Procedure TEGLGRPH
Function
Sets the border color of the backdrop.
Declaration
SetTEGLBorderColor (BorderColor:word)
Remarks
Sets the border color for the backdrop to
BorderColor.
The default is WHITE.
Restrictions

Must be called before calling TEGLClearScreen.
See also
TEGLClearScreen, SetTEGLBorderShow,
SetTEGLBackColor, SetTEGLFillPattern, SetTEGLFillStyle

Example

SetTEGLBorderColor (BROWN) ;
ClearTEGLScreen;

Programmer's Reference Guide - 144 - TEGL Windows Toolkit

Chapter 8 - Special Effects

SetTEGLFillPattern Procedure TEGLGRPH
Function
Sets the Fill pattern for the backdrop.
Declaration
SetTEGLFillPattern (backpattern:FillPatternType)
Remarks
Sets the fill pattern for the backdrop to
backpattern.
The default is defined as a constant:
CONST
TEGLBackPattern FillPatternType =

(SAR, $55, SAR, §55, SAR, §55, SAR, $55) ;

Restrictions

See also

Example

CONST

Must be called befor calling TEGLClearScreen.

TEGLClearScreen, SetTEGLBorderShow,
SetTEGLBackColor, SetTEGLBorderColor, SetTEGLFillStyle

MyPattern : FillPatternType =
($FF, $22, SFF, $22, SFF, $22, $FF, $22) ;

SetTEGLFillPattern (MyPattern) ;

ClearTEGLScreen;

SetTEGLFillStyle Procedure TEGLGRPH

Function

Sets the Fill style for the backdrop.

Programmer's Reference Guide - 145 - TEGL Windows Toolkit

Chapter 8 - Special Effects

Declaration
SetTEGLFillStyle (pattern:word)

Remarks
Sets the fill style to pattern.
Use one of the predefined fill styles in the Graph
Unit.
Setting the fill style cancels the user defined
pattern.

Restrictions

Must be called before calling TEGLClearScreen.
See also
TEGLClearScreen, SetTEGLBorderShow,
SetTEGLBackColor, SetTEGLBorderColor,
SetTEGLFillPattern
Example

SetTEGLFillPattern(SolidFill);
ClearTEGLScreen;

Creating Shadow Boxes

A shadow box is a simple rectangular that has a shadow edge to give a
3-dimensional effect. A shadow box is the quickest method to clear a
window after PushImage.

ShadowBox Procedure TEGLGRPH

Function
Creates a 3-D type box at the rectangular area defined
by x, vy, x1, vyl.

Declaration
ShadowBox (x,vy,x1,yl : word)

Remarks
X, y, x1, yl defines the rectangular area for the
ShadowBox.

The default Bar SOLID fill color is

WHITE with BLACK borders and BLACK shadow.
See also

SetShadowColor, SetShadowBorderColor,

Programmer's Reference Guide - l46 - TEGL Windows Toolkit

Chapter 8 - Special Effects
SetShadowFillPattern, SetShadowFillStyle

Example

PushImage (100,100,200, 200);
ShadowBox (100,100,200, 200) ;

ShadowBoxText Procedure TEGLGRPH

Function

Outputs a text string within a ShadowBox.
Declaration

ShadowBoxText (x,y,txtlen:word; textstr:string)
See also

ShadowBox
Example

ShadowBoxText (100,100,200, '"TEGL Systems Corporation');

SetShadowColor Procedure TEGLGRPH
Function
Sets the Bar fill color.
Declaration
SetShadowColor (bcolor:word)
Remarks

bcolor defines the ShadowBox color.

The default Bar fill color is WHITE.
See also
ShadowBox, SetShadowBorderColor,
SetShadowFillPattern, SetShadowFillStyle
Example

Programmer's Reference Guide - 147 - TEGL Windows Toolkit

Chapter 8 - Special Effects

PushImage (100,100,200, 200);
SetShadowColor (red) ;
ShadowBox (100,100,200, 200) ;

SetShadowBorderColor Procedure TEGLGRPH
Function
Sets the ShadowBox border color.
Declaration
SetShadowBorderColor (bcolor:word)
Remarks

See also

Example

bcolor defines the ShadowBox border color.
The default border color is BLACK.

ShadowBox, SetShadowColor, SetShadowFillPattern,
SetShadowFillStyle

PushImage (100,100,200, 200);
SetShadowBorderColor (LIGHTGRAY) ;
ShadowBox (100,100,200, 200);

SetShadowFillPattern Procedure TEGLGRPH
Function
Sets the bar fill pattern for ShadowBox.
Declaration
SetShadowFillPattern (backpattern:
FillPatternType)
Remarks

backpattern is of the type FillPatternType

Programmer's Reference Guide - 148 - TEGL Windows Toolkit

Chapter 8 - Special Effects

CONST
MyShadowPattern : FillPatternType =
($SARA, $55, SAA, $55, SAA, $55, $AA, $55) ;

The default fill pattern is SOLIDFILL which is
defined in the Graph Unit.
See also
ShadowBox, SetShadowColor,
SetShadowBorderColor, SetShadowFillStyle
Example

CONST
MyShadowPattern : FillPatternType =
($SARA, $55, SAA, $55, SAA, $55, $AA, $55) ;

PushImage (100,100,200, 200);
SetShadowFillPattern (MyShadowPattern) ;
ShadowBox (100,100,200, 200);

SetShadowFillStyle Procedure TEGLGRPH
Function
Sets the bar fill style for ShadowBox.
Declaration
SetShadowFillStyle (pattern:word)
Remarks

pattern is of one of the predefined type in TP's
Graph unit.

The default fill style is SOLIDFILL.

See also
ShadowBox, SetShadowColor, SetShadowBorderColor,
SetShadowFillPattern

Example

PushImage (100,100,200,200);
SetShadowFillStyle (LineFill);
ShadowBox (100,100,200, 200);

Programmer's Reference Guide - 149 - TEGL Windows Toolkit

Chapter 8 - Special Effects

Creating Shadow Text

Shadow text enhances the normal BGI fonts by writing the text string
several times with a slight shift of the x,y coordinates on each write.

This simple method provides a 3-D quality to any BGI or TEGL font.

Shadowtext Procedure TEGLGRPH
Function
Displays a shadowed textstr at (x,vVy).
Declaration
Shadowtext (x,y,color:word; textstr:string)
Remarks

X,y specifies the coordinates for displaying the
textstr.

color specifies the color of the textstr.

Shadowtext is affected by SetTextStyle,
SetTextJustify and SetUserCharSize in the
Graph Unit.
See also
SetShadowTextType, SetShadowTextShadow,
SetShadowTextHighlight, ShadowTextHighlightOFF
Example

ShadowText (100,100, LightCyan, '"TEGL Systems Corporation');

SetShadowTextType Procedure TEGLGRPH

Programmer's Reference Guide - 150 - TEGL Windows Toolkit

Chapter 8 - Special Effects

Function
Sets the shadow text font type.
Declaration
SetShadowTextType (texttype:pointer)
Remarks
texttype is a pointer to one of the TEGL fonts. If
texttype is set to nil, ShadowText uses
OutTextXY in the Graph Unit.
See also
ShadowText, SetShadowTextShadow,
SetShadowTextHighlight, ShadowTextHighlightOFF
Example
SetShadowTextType (@Script) ;
ShadowText (100,100, LightCyan, 'TEGL Systems Corporation');
SetShadowTextShadow Procedure TEGLGRPH
Function
Sets the shadow color for ShadowText.
Declaration
SetShadowTextShadow (color:word)
Remarks
color is the shadow color when displaying the
shadowed text.
The default shadow color is BLACK.
See also
ShadowText, SetShadowTextType,
SetShadowTextHighlight, ShadowTextHighlightOFF
Example
SetShadowTextShadow (1lightgray) ;
ShadowText (100,100, LightCyan, 'TEGL Systems Corporation');
SetShadowTextHighlight Procedure TEGLGRPH

Programmer's Reference Guide - 151 - TEGL Windows Toolkit

Chapter 8 - Special Effects

Function
Declaration

Remarks

See also

Example

Sets the highlighted color for ShadowText.

SetShadowTextHighlight (color:word)

color is the highlighted color when displaying the

shadowed text. Normally, ShadowText toggles the

high bit of color to achieve the different
shadings.

ShadowText, SetShadowTextType,
SetShadowTextShadow, ShadowTextHighlightOFF

SetShadowTextHighlight (blue) ;
ShadowText (100,100, LightCyan, '"TEGL Systems Corporation');

ShadowTextHighlightOFF Procedure

TEGLGRPH

Function

Declaration

Remarks

See also

Example

Resets the highlight color set by
SetShadowTextHighlight.

ShadowTextHighlightOFF

Switches off the highlight color set by
SetShadowTextHighlight.

ShadowText, SetShadowTextType,
SetShadowTextShadow, SetShadowTextHighlight

SetShadowTextHighlight (blue) ;
ShadowText (100,100, LightCyan, '"TEGL Systems Corporation');
ShadowTextHighlightOFF;

ShadowText (100,120, LightCyan, '"TEGL Systems Corporation');

Programmer's Reference Guide - 152 - TEGL Windows Toolkit

Chapter 8 - Special Effects

Other text effects

ExtendTextXY Procedure TEGLGRPH
Function
Makes embossed text.
Declaration
ExtendTextXY (X,Y : Word; S : String);
Restrictions
Does not work with BGI fonts.
Example

VAR ifs : ImageStkPtr;

QuickFrame (1ifs,100,100,300,150);
OutTEGLTextXY (105,105, "Normal Text');
ExtendTextXY (105,125, "FAT TEXT');

ShiftTextXY Procedure TEGLGRPH
Function
Writes text with a leading white edge.
Declaration
ShiftTextXY (X,Y : Word; S : String);
Restrictions
Does not work with BGI fonts.
Remarks
X and Y are absolute screen coordinates, S
is the string to display.
Example

VAR ifs : ImageStkPtr;

SetShadowColor (LightGray) ;
QuickFrame (ifs,100,100,300,150);
OutTEGLTextXY (105,105, "Normal Text');

Programmer's Reference Guide - 153 - TEGL Windows Toolkit

Chapter 8 - Special Effects

ShiftTextXY (105,125, 'Shifted Text');

Buttons
DefineButtonClick Procedure TEGLGRPH
Function
Displays an icon, sets mouse click area and attaches it
to an Event.
Declaration
DefineButtonClick (ifs : ImageStkPtr; x,y : Word;
button : Pointer; p : CallProc);
Remarks
Ifs is the frame the icon is placed on. Button can
be any icon image. P is the Event to pass control to
when the icon is clicked on.
P can be set to CollapseTolconShow or
CollapseToMsClick if the button is for closing a frame.
Example

DefineButtonClick (ifs, 150,200, @ImageOK,CollapseToIconShow) ;

DefinelLongButtonClick Procedure TEGLGRPH

Function

Declaration

Remarks

Displays a long button with text, sets mouse click area,
and attaches it to an event.

DefinelLongButtonClick (ifs : ImageStkPtr; x,y,1ln : Word;
msg : String; p : CallProc);

Ifs is the frame the button is placed on. x,y are the

Programmer's Reference Guide - 154 - TEGL Windows Toolkit

Example

Chapter 8 - Special Effects

coordinates to place the button at. Ln is the length of
the message in pixels (depends on currently selected
font) and msg is the text to place inside the button.

P is the event to activate when the button is clicked on.

DefinelLongButtonClick (ifs, 100,150, 35, 'Quit',CollapseToMsClick);

DefineUserButtonClick Procedure TEGLGRPH

Function

Declaration

Remarks

Restrictons

Example

Displays a button with text, sets mouse click area, and
attaches it to an event.

DefineUserButtonClick (ifs : ImageStkPtr; x,y : Word;
msg : String; p : CallProc);

Ifs is the frame the button is placed on. x,y are
the coordinates to place the button at and msg is
the text to place inside the button. P is the
event to activate when the button is clicked on.

Msg cannot be more than about 4 characters. This is
dependant on the currently selected font.

DefineUserButtonClick (ifs, 100,150, 'Quit',CollapseToMsClick);

PutUserButtonClick Procedure TEGLGRPH

Function

Programmer's Reference Guide - 155 - TEGL Windows Toolkit

Chapter 8 - Special Effects

Draws a button at the coordinates with a message.

Declaration
PutUserButtonClick (ifs : ImageStkPtr; x,y : Word;
msg : String)
Restrictions
Msg cannot be more than about 4 charcters, depends
upon the currently selected font.
Remarks
This routine just displays a button, no mouse click
area 1is defined.
Explosions
CollapseToIconShow Event TEGLGRPH
Function
Collapse a frame and restore the icon it came from.
Declaration
CollapseToIconShow (ifs : ImageStkPtr; ms : MsClickPtr)
Word;
Restrictions
Should only be attached to a frame created after a call
to ExplodeToIconShow.
Remarks

See also

After opening a frame from a ExplodeToIconShow, this

Event can be attached to a button within the frame. When
this button is clicked on, the frame will collapse and zip
to the original icon location and restore the icon.

ExplodeToIconShow,DefineButtonClick.

CollapseToMsClick Event TEGLGRPH

Function

Declaration

Restrictions

Collapse a frame and zip back to the original mouse click
position.

CollapseToMsClick (ifs : ImageStkPtr; ms : MsClickPtr):
Word;

Programmer's Reference Guide - 156 - TEGL Windows Toolkit

Remarks

See also

Chapter 8 - Special Effects

Should only be attacted to a frame created after a call
to ExplodeFromMsClick.

After opening a frame from a ExplodeFromMsClick, this
Event can be attached to a button within the frame. When
this button is clicked on, the frame will collapse and zip
to the original defined mouse click area.

ExplodeFromMsClick, DefineButtonClick.

ExplodeFromIconHide

TEGLGRPH

Function

Declaration

Restrictions

Remarks

See also

Hides the icon, zips and opens a new frame.

ExplodeFromIconHide (ifs : ImageStkPtr; ms: MouseClickPtr;
x,y,x1,yl : Word);

The icon exploded from must be in a frame of its own
for this to look right.

ifs and ms are the parameters passed to an event.

Xx,y,x1,yl are the coordinates where a new frame is

to be opened. After a call to this procedure a new frame is
created. Save the Global Variable StackPtr if you wish to
manipulate the new frame.

CollapseToIconShow, DefineButtonClick.

ExplodeFromMsClick

Procedure TEGLGRPH

Function

Declaration

Remarks

Zips from a mouse click location to a new frame
position.

ExplodeFromMsClick (1ifs : ImageStkPtr; ms : MouseClickPos;
x,y,x1,yl : Word);

ifs and ms are the parameters passed to an event.
Xx,y,x1,yl are the coordinates where a new frame is

Programmer's Reference Guide - 157 - TEGL Windows Toolkit

Chapter 8 - Special Effects

to be opened. After a call to this procedure a new frame is
created. Save the Global Variable StackPtr if you wish to
manipulate the new frame.

See also
CollapseToMsClick, DefineUserButtonClick.

Moving and Transforming XOR Boxes

MoveBox Procedure TEGLGRPH

Function
Moves a (XOR) wire frame from x, y to ax, ay.

Declaration
MoveBox (ax,ay,x,y,x1,yl : integer)

Remarks
X, y, x1, yl specify the coordinates of the
starting (XOR) wire frame.

ax, ay are the upper left coordinates of the
ending position of the (XOR) wire frame.

The box movement is divided into 6 steps which is added
or subtracted from the originating position until it
reaches the destination.

The global variable ZipDuration may be changed to
set the delay between each movement step.
See also
XORBox, XORCornerBox, ZipToBox, ZipFromBox
Example
A wire frame box 50(w) x 50(h) is moveed from 100,100
to 500,280.

MoveBox (500, 280,100,100,150,150) ;

ZipToBox Procedure TEGLGRPH

Programmer's Reference Guide - 158 - TEGL Windows Toolkit

Chapter 8 - Special Effects

Function
Creates a moving and expanding (XOR) wire frame from
ax, ay, axl, ayl to x, y, x1, yl.

Declaration
ZipToBox (ax,ay,axl,ayl,x,y,x1,yl : integer)

Remarks

ax, ay, axl, ayl specifies the rectangular
coordinates of the starting (XOR) wire frame.

X, y, x1, yl specifies the rectangular coordinates
of the ending (XOR) wire frame.

The box is moved from (ax,ay) to (x,y) using

MoveBox before the box is transformed (expanded).

The transformation is divided into 6 steps which is
added or subtracted from (ax,ay,axl,ayl) until the size
equals (x,y,x1,yl).

The global variable ZipDuration may be changed to
set the delay between each movement step.

See also
XORBox, XORCornerBox, MoveBox, ZipFromBox

Example
A wire frame box 50(w) x 50(h) at (100,100) will be
visually moved and expanded to a box 100(w) x 100(h) at
400,200.

ZipToBox(100,100,150,150,400,100,500,200);

ZipFromBox Procedure TEGLGRPH

Function
Creates a shrinking and moving (XOR) wire frame from
x, y, x1, yl to ax, ay, axl, ayl.
Declaration
ZipFromBox (ax,ay,axl,ayl, x,y,x1l,yl : integer)
Remarks
X, y, x1, yl specifies the rectangular coordinates
of the starting (XOR) wire frame.

ax, ay, axl, ayl specifies the rectangular

Programmer's Reference Guide - 159 - TEGL Windows Toolkit

See also

Example

Chapter 8 - Special Effects
coordinates of the ending (XOR) wire frame.

The box is transformed by dividing the transformation
steps into 6 steps which is added or subtracted from (x,
y,x1,y1l) until the size equals (ax,ay,axl,ayl). The box
is then moved from (x,y) to (ax,ay) using MoveBox.

The global variable ZipDuration may be changed to
set the delay between each movement step.

XORBox, XORCornerBox, MoveBox, ZipFromBox
A wire frame box 100(w) x 100(h) at (x=400,y=200) will

be visually shrunk and moved to a box 50(w) x 50(h) at
(x=100,y=100) .

ZipFromBox (100,100,150,150,400,100,500,200);

Icon Button

DrawLongButton Procedure TEGLGRPH
Function
Creates an icon button of size 1n at (x,Vy).
Declaration
DrawLongButton (x,y,1ln : word)
Remarks
X,y specifies the coordinates for the icon button.
1n specifies the length of the icon button in
pixels.
Example

DrawLongButton (x,y,200);
fonttable := @fontl4;

setcolor (white);

outtegltextxy (x+15,y+1, 'TEGL Systems Corporation');

Programmer's Reference Guide - 160 - TEGL Windows Toolkit

Programmer's Reference Guide - 161 - TEGL Windows Toolkit

Chapter 9 - Writing Events

Writing Events

All Event-handlers must use the following header definition.

{SF+}

function MyEvents (Frame:imagestkptr; MouseClickPos: msclickptr) : word;

{SF-}

This is the declaration of a CallProc. Note the far call directive.

If you write an event that does not used the far call directive you will

be unable to use it as a parameter. The compiler will give an error message
143 of g Invalid procedure or function reference.

Mouse Awareness

FindFrame Function TEGLUNIT

Function
Searches through the Frame stack for the first frame
that overlaps the coordinates passed as a parameter.
Declaration
FindFrame (mxpos,mypos:word)
Result type

Pointer.

Remarks
Returns a ImageStkPtr if the parameters overlap
one of the frames, otherwise returns Nil for no match.
FindFrame is used by the TEGLSupervisor, but is
provided as an external procedure to allow for
specialize routines that may be used to replace the
TEGLSupervisor.

Restrictions

FindFrame starts the scan from the top of the stack,
thereby returning the first frame found that overlaps
the parameters.

See also
CheckMouseClickPos

Example
The following example creates 250 random boxes and
monitors the position of the mouse pointer to see if it

Programmer's Reference Guide - 162 - TEGL Windows Toolkit

Chapter 9 - Writing Events

overlaps one of the boxes. The timer tick routine is
used to blink the overlapped box, once every second.

Var 1 : word;
fsl,fs2 : imagestkptr;

function BlinkBox (Frame:imagestkptr;
MouseClickPos: msclickptr) : word;
BEGIN
if fsl<>nil then
begin
hidemouse;

If fsl1”.ImageActive then
hideimage (fs1)

else
Showimage (fsl, fs1”.x, fsl1*.y);

showmouse;
end;

beep (10000,1,1);

ResetTimerFlag;
BlinkBox := 1;
end;

procedure CreateRandomBox (x,y:word) ;
begin
PushImage (x,y,x+20,y+20);
shadowbox (x,y,x+20,y+20) ;
end;

for i:=1 to 250 do
createrandombox (random (600) , random (320)) ;

fsl := stackptr;
SetTimerTick (18, BlinkBox) ;
repeat
if mouse_buttons<>0 then
fs2 := frameselectandmove (mouse_xcoord,mouse_ycoord)
else
fs2 := findframe (mouse_xcoord,mouse_ycoord) ;

if (fs2<>nil) and (fsl<>fs2) then
begin
If (not fsl”.ImageActive) then
i:=blinkbox(nil,nil);
fsl := £fs2;
end;

checkctrlbreak;

Programmer's Reference Guide - 163 - TEGL Windows Toolkit

Chapter 9 - Writing Events

until false;

CheckMouseClickPos Function TEGLUNIT

Function
Compares all Mouse click defines within a frame, for a
match with the current mouse coordinates.
Declaration
CheckMouseClickPos (Frame, mxpos, mypos:word)
Result type
Pointer.
Remarks
Returns a MSClickPtr type if mouse coordinates
matches one of the mouse click defines, otherwise
returns Nil for no match.

CheckMouseClickPos is normally an internal procedure,
used by the TEGLSupervisor. The Mouse Click position
information is normally provided as the second
parameter of an event, whenever an event is called.

However, CheckMouseClickPos may be used to rewrite the
TEGLSupervisor or used to determine if the Mouse Click
position has changed.

Restrictions
FindFrame should be used first, to check if another
frame is overlapping the current frame, before using
CheckMouseClickPos.

See also
DefineMouseClickPtr, ResetMouseClicks,
FindMouseClickPtr, ResetMSClickSense,
ResetMSClickCallProc, ResetMSClickActive

Example
The following example defines an array of 100 Mouse
Click Areas which uses CheckMouseClickPos to establish
the mouse location within the frame.

var X,y : word;

Function PlayAllNotes (Frame:ImageStkPtr;
MouseClickPos: MSClickPtr) :WORD;
var ms : msclickptr;
BEGIN

Programmer's Reference Guide - 164 - TEGL Windows Toolkit

Chapter 9 - Writing Events

while findframe (mouse_xcoord,mouse_ycoord)=frame do
begin
ms := CheckMouseClickPos (frame, mouse_xcoord,
mouse_ycoord) ;
if ms<>nil then
sound (ms”.clicknumber=*10) ;
end;

nosound;
PlayAllNotes := 0;
END;

PushImage(1,1,107,124);
shadowbox (1,1,107,124);
DefineMouseClickArea (stackptr,1,1,107,124,true,PlayAllNotes,MSSense);

for x:=0 to 9 do
for y:=0 to 9 do
begin
shadowbox (stackptr”.x+3+x*10, stackptr”.y+3+y*10,
stackptr”.x+3+10+x*10, stackptr”.y+3+10+y*10) ;
DefineMouseClickArea (stackptr, 3+x*10, 3+y*10, 3+x*10+6,
3+y*10+6, true,nilunitproc,MSClick);

end;
CheckForMouseSelect Function TEGLUNIT
Function
Checks if one of the mouse click areas within a frame
has been selected.
Declaration

CheckforMouseSelect (frame)

Result type
Returns the Mouse Click Pointer if mouse button was
released while the mouse cursor overlaps a button icon.

Remarks
This procedure may be used when only the Frame is known
and the program is waiting for the user to click on one
of a series of unknown icons.

CheckForMouseSelect may be used within an event to wait

Programmer's Reference Guide - 165 - TEGL Windows Toolkit

Chapter 9 - Writing Events
on a multiple button type icon replies from the user.

If PressButtonFlag is true, then visualbuttonpress is
called to simulate the pressing of a button icon.

Restrictions

See also

Example

var X,y

If PressButtonFlag is true, the restrictions for
VisualButtonPress should be followed. If the icon does
not have a black fringe, set PressButtonFlag to false.

PressButton, VisualButtonPress

The following example creates (8) button type icons,
which calls up a window that displays two choices,
Cancel or OK. The event waits until one of the
choices are made before returning to TEGLSupervisor.

word;

function DemoCancelOK (Frame:imagestkptr;

begin

MouseClickPos: msclickptr) : word;

if visualbuttonpress (frame,MouseClickPos) then

begin

hidemouse;

PushImage (frame”.x, frame”.y, frame”.x+100, frame”.y+50) ;
shadowbox (frame”.x, frame”.y, frame”.x+100, frame”.y+50) ;

Putpict (frame”.x+6, frame”.y+6, @imageCancel,black) ;
DefineMouseClickArea (stackptr, 6,6, 6+35,6+12,true,
nilunitproc,MSClick);

Putpict (frame”.x+12+35, frame”.y+6, @imageOK, black) ;
DefineMouseClickArea (stackptr,12+35,6,12+35+35,6+12,
true,nilunitproc,MSClick);

showmouse;
repeat

mouseClickPos := CheckforMouseSelect (stackptr);
until MouseClickPos<>nil;

if MouseClickPos”.Clicknumber=1 then
SlideBeep (100,500, 3)

else
Beep (800,3,100);

hidemouse;
popimage;
showmouse;

end;

Programmer's Reference Guide - 166 - TEGL Windows Toolkit

Chapter 9 - Writing Events

DemoCancelOK := 1;
end;

PushImage(1,1,100,100);
shadowbox (1,1,100,100);

for x:=0 to 1 do
for y:=0 to 4 do
begin
Putpict (stackptr”.x+6+x*42, stackptr”.y+6+y*18,
@imageBlankBut,black);
DefineMouseClickArea (stackptr, 5+x*42,5+y*18,5+x*42+35,
5+y*18+12, true, DemoCancelOK,MSClick) ;
end;

Special Effects

PressButton Procedure TEGLUNIT

Function
Simulates the pressing of a button type icon. The
actual routine simply shifts the icon down and to the
right by two pixels.

Declaration
PressButton (fs, mouseopt :msclickptr)

Remarks
This procedure is used mainly by VisualButtonPress to
simulate the action of a electronic button switch.
PressButton may be used to create the illusion of a
button left in the down position.

Restrictions

You are required to redraw the button if you need the
button in the up position.

This routine only works with icons that have a black
fringe of two pixels wide on the right and bottom of
the icon. The defined mouse click area should not
include this shadow area ie. x1 and yl is less two
pixels.

See also
VisualButtonPress, CheckForMouseSelect

Example

Programmer's Reference Guide - 167 - TEGL Windows Toolkit

Chapter 9 - Writing Events

The following example creates (8) button type icons and
toggles the buttons on/off whenever the icon is clicked
upon.

var X,y : word;

function SwitchOff (Frame:imagestkptr;
MouseClickPos: msclickptr) : word; forward;

function SwitchOn (Frame:imagestkptr;
MouseClickPos: msclickptr) : word;

begin
Beep (1500,1,10);
PressButton (Frame, MouseClickPos) ;
ResetMSClickCallProc (Frame, MouseClickPos”.ClickNumber, SwitchOff);
while Mouse_Buttons<>0 do;
SwitchOn := 1;

end;

function SwitchOff (Frame:imagestkptr;
MouseClickPos: msclickptr) : word;
begin
Beep (1500,1,10);
hidemouse;
Putpict (Frame”.x+MouseClickPos”.ms.x,
Frame”.y+MouseClickPos”.ms.y, @imageBlankBut,black) ;

showmouse;
ResetMSClickCallProc (Frame, MouseClickPos”.ClickNumber,

SwitchOn) ;
while Mouse_Buttons<>0 do;
SwitchOff := 1;

end;

PushImage(1,1,100,100);
shadowbox (1,1,100,100);

for x:=0 to 1 do
for y:=0 to 4 do
begin
Putpict (stackptr”.x+6+x*42, stackptr”.y+6+y*18,
@imageBlankBut,black);
DefineMouseClickArea (stackptr, 5+x*42,5+y*18,
5+x*42+35,5+y*18+12, true, SwitchOn,MSClick) ;
end;

Programmer's Reference Guide - 168 - TEGL Windows Toolkit

Chapter 9 - Writing Events

VisualButtonPress Function TEGLUNIT

Function

Declaration

Result type

Remarks

Restrictions

See also

Example

var X,y : word;

Performs the pressing and releasing of a button type
icon, controlled by the holding down of the left mouse
button. Returns when either the user releases the left
mouse button or the mouse cursor wanders off the
defined mouse click area.

VisualButtonPress (frame, mouseopt:msclickptr)

Returns true if mouse button was released while the
mouse cursor overlaps with the button icon.

This procedure may be used whenever the Frame and the
Mouse Click Option is known. If the program is waiting
for the user to click on one of a series of unknown
icons, use CheckForMouseSelect to do an automatic Frame
and Mouse click Option search.

VisualButtonPress is excellent as an entry routine for
an event, since the frame and mouse click position are
known.

This routine only works with icons that has a black
fringe of two pixels wide on the right and bottom of
the icon. The defined mouse click area should not
include this shadow area ie. x1 and yl is less two
pixels.

PressButton, CheckForMouseSelect

The following example creates (8) button type icons,
allowing the mouse cursor to glide over (while the
buttons simulates the on/off motions). A series of
beeps are sounded when the mouse button is released
with the mouse cursor is on a button.

function SwitchOn (Frame:imagestkptr;
MouseClickPos: msclickptr) : word;

begin

Beep (1500,1,10);
if VisualButtonPress (Frame,MouseClickPos) then
slidebeep (500,4000,2);

SwitchOn

=1,

Programmer's Reference Guide - 169 - TEGL Windows Toolkit

Chapter 9 - Writing Events
end;

PushImage(1,1,100,100);
shadowbox (1,1,100,100);

for x:=0 to 1 do
for y:=0 to 4 do
begin
Putpict (stackptr”.x+6+x*42, stackptr”.y+6+y*18,
@imageBlankBut,black);
DefineMouseClickArea (stackptr, 5+x*42,5+y*18,
5+x*42+35,5+y*18+12, true, SwitchOn,MSClick) ;
end;

Programmer's Reference Guide - 170 - TEGL Windows Toolkit

Chapter 10 - Animation

Animation

The Animation unit provides the tools to animate a series of icons.
Combined with the Icon Editor, an event can come to life.

Animation in its simplest form is the sequential display of frames. A
frame in the sense of the animator is a single still image that is
displayed. By linking a series of frames, animation is achieved by
displaying each frame in sequence.

Using Object-Oriented Programming (OOP), the animation is as simple
as declaring a object, initializing the object, then animating the object.

The description for each of the functions and procedures in this

chapter is slightly different from the other chapters. Since the

Animation unit is written in OOPS, the description refers to

objects and methods. When referencing an object's method the object name
is prefixed to the method using the dot "." . The dot is used with objects
just as it is with records.

As an example:

VAR
BouncelIcon : animateobject;

BouncelIcon.ResetFrame (1) ;

Bouncelcon.animateinit;

Bouncelcon.origin (604, wy) ;

BouncelIcon.animate (BouncelIcon.destination (wx,wy)) ;

The methods are ResetFrame, AnimateInit, Origin, Animate and
Destination. The object is Bouncelcon. An object's methods and data
can also be accessed using WITH.

The above example may also be expressed as:

VAR
BouncelIcon : animateobject;

WITH BounceIcon DO
BEGIN
ResetFrame (1) ;
Animateinit;
Origin (604, wy) ;

Programmer's Reference Guide - 171 - TEGL Windows Toolkit

Chapter 10 - Animation

Animate (Destination (wx,wy));
END;

Animation Overview

Animating a series of icons is relatively easy with the methods in the
Animation unit. The hardest part is creating the series of icons and
coordinating the movement differences between them.

The first step is to declare an object of AnimateObject. Here
BouncelIcon is declared as the object type AnimateObject.

VAR BouncelIcon : AnimateObject;

The data within the object Bouncelcon must be initialize before we can
begin adding frame sequences. To initialize an object of Bouncelcon,
use the method Init.

BouncelIcon.Init;

The next step is to add an icon frame to the object. The method AddFrame

adds an icon frame sequence to the object. The parameters are from left to
right; the icon constant, defined in TEGLIcon Unit; (-15,0) the horizontal

and vertical travel offset, respectively, on completion of this frame
sequence; (14,37) the height and width of the icon; (10) the duration in
(milliseconds) before progressing to the next sequence; (0,0) the sound in
hertz, and duration; (black) the color replacement for any black pixels in the
icon. In this case, black replaces black.

BouncelIcon.AddFrame (@imageblankbut,-15,0,14,37,10,0,0,black);

An object can have a number of different frame sequences. In our example,
we need two sequences; a sequence for animating from the right side of the
screen to the left side and a sequence for animating from the left to the

right. Thus we will label the above frame as Sequence 1. The labels

are arbitrary numbers ranging from 0 to 65535. However, you must use this

label to switch to the appropriate sequence when the frames are animated.

Programmer's Reference Guide - 172 - TEGL Windows Toolkit

Chapter 10 - Animation

BouncelIcon.sequence (1) ;

Use the method ResetSequence to reset the counters within the

object before creating the second sequence. We then assign the second
sequence the arbitrary number of 2. The only difference between this
AddFrame and the last AddFrame is the horizontal travel offset.

Instead of -15, the value is positive, thus adding to the x coordinate.

BounceIcon.ResetSequence;
BouncelIcon.AddFrame (@imageblankbut,15,0,14,37,10,0,0,black);
Bouncelcon.sequence (2);

The method AnimatelInit, replicates the first screen to the second
screen.

BouncelIcon.AnimatelInit;

Set the animation origin. In our test program, we will set the icon to the
middle of the screen.

BouncelIcon.Origin (GetMaxx div 2,GetMaxy div 2);

To animate the frames, we use the method Animate. Animate

displays the frames until the requested frame count is reached. Since
we have only one frame to animate within each sequence, the animator
will loop using the same frame until it satisfies the requested frame
count.

However, since we are working with coordinates, we do not know how many
frames it would take to move the icon across the screen. The method
Destination will perform a test run on the sequence until one of the
coordinates is satisfied and passes back a count of the frames needed to
reach the destination. Thus, we can use the method Destination with

the method Animate to finally animate the icon.

Programmer's Reference Guide - 173 - TEGL Windows Toolkit

Chapter 10 - Animation

BouncelIcon.sequence (1) ;
BouncelIcon.Animate (BouncelIcon.Destination (36,0));

Animating from left to right.

Bouncelcon.sequence (2);
BouncelIcon.Animate (BouncelIcon.Destination (560,0));

Try experimenting with the example program. You can use the same icon to
add a few more frames to each sequence. Vary the travel offsets to see
the effect. However, be careful that the resulting travel distance should
reach the destination, otherwise the animator will loop forever trying to
reach a false destination. As well, the method Destination provides

only an approximate count of frames to reach the destination. The actual
destination coordinate will depend on the travel offset values on each
frame added or subtracted from the origin.

Animation OOPS Methods

Origin Procedure Method ANIMATE
Function
Sets the animated object's starting origin.
Declaration
Origin (ox,oy:word)
Remarks

Sets where the first frame will be displayed.
See also

GetOrigin, Destination
Example

VAR apple : AnimateObiject;

apple.origin (100,100);

Programmer's Reference Guide - 174 - TEGL Windows Toolkit

Chapter 10 - Animation

GetOrigin Procedure Method ANIMATE
Function

Gets the animated object's current coordinates.
Declaration

GetOrigin (VAR lastox, lastoy:integer)
Remarks

Returns the current coordinate from where Animate
will proceed from.

The Origins of an animated object will change
depending on the travel offset defined in each
animation frame.

See also
Origin, Destination

Example
VAR Apple : AnimateObject;
lastx, lasty : word;

Apple.Animate (5);
Apple.GetOrigin(lastx, lasty);

Destination Function Method ANIMATE

Function
Returns a count on the number of frames that is needed
for animating before the sequence gets the destination
coordinates dx,dy.
Declaration
GetOrigin (VAR lastox, lastoy:integer)
Result type
word. frame count.
Remarks
Destination will return a count if either x
or y coordinates of the origin is less then or
greater then the destination dx,dy coordinates.

Programmer's Reference Guide - 175 - TEGL Windows Toolkit

See also

Example

VAR apple

Chapter 10 - Animation

Destination is only an approximation of the number

of frames required to complete the travel distance. The
actual movement is dependent on each frame and its
travel offsets.

Origin, GetOrigin

AnimateObject;

Apple.Animate (Apple.Destination (300, 300));

ResetFrame Procedure Method ANIMATE
Function

Resets a sequence to begin at any frame number.
Declaration

ResetFrame (startframe : word)
Remarks

See also

Example

VAR Apple

if startframe is greater then the number of frames
in the sequence, the sequence is set at the last frame.

startframe of 0 will reset the sequence back to
the beginning.

Sequence

AnimateObject;

Apple.ResetFrame (0) ;

Apple.Animate (5);

Sequence Procedure Method ANIMATE

Programmer's Reference Guide - 176 - TEGL Windows Toolkit

Chapter 10 - Animation

Function

Sets the sequence pointer.
Declaration

Sequence (segqnum:word)
Remarks

segnum is any number associated with a sequence of
frames. If the sequence number does not exist, the
method will assume that a new sequence will be created.

Creating a new sequence, simply records the segnum
and the start frame. So creating a sequence can occur
anytime after adding the first frame. You can continue
to add frames after Sequence. Use
ResetSequence to clear and start a new sequence.

See also
ResetSequence, ResetFrame

Example

VAR Apple : AnimateObject;

Apple.init;

Apple.addframe (@imageapple, mx, my, ht,wd,dl, hz,hzdl, color);
Apple.addframe (@imageapple, mx, my, ht,wd,dl, hz,hzdl, color);
Apple.sequence (88) ;

Apple.ResetSequence;
Apple.addframe (@imageapple, mx, my, ht,wd,dl, hz,hzdl, color);
Apple.addframe (@imageapple, mx, my, ht,wd,dl, hz,hzdl, color);
Apple.sequence (99);

Apple.sequence (88);
Apple.animate (5);

ResetSequence Procedure Method ANIMATE

Function
Sets the internal data pointers firstframe and
currentframe to nil.

Declaration
ResetSequence

Programmer's Reference Guide - 177 - TEGL Windows Toolkit

Chapter 10 - Animation

Remarks
ResetSequence will reset the internal data
pointers to nil. This will allow a new sequence to
begin.

Restrictions

Use the method Sequence to save the data pointers,
otherwise all created frames will be lost.

See also
ResetSequence, ResetFrame

Example

VAR apple : AnimateObiject;

Apple.init;

Apple.addframe (@imageapple, mx, my, ht,wd,dl, hz,hzdl, color);
Apple.addframe (@imageapple, mx, my, ht,wd,dl, hz,hzdl, color);
Apple.sequence (88) ;

Apple.ResetSequence;
Apple.addframe (@imageapple, mx, my, ht,wd,dl, hz,hzdl, color);
Apple.addframe (@imageapple, mx, my, ht,wd,dl, hz,hzdl, color);
Apple.sequence (99);

Apple.sequence (88);
Apple.animate (5);

AddFrame Procedure Method ANIMATE
Function
Add a animation frame.
Declaration
AddFrame (pp:pointer; mx,my: integer; ht,wd,dy,hz,
hzdy, co:word)
Remarks

AddFrame is the icon definition pointer.

mx,my is the travel offsets that are added to the
origin after the icon is displayed.

ht,wd is the height and width of the icon. These
parameters are used to save the background image before
drawing the icon.

Programmer's Reference Guide - 178 - TEGL Windows Toolkit

Chapter 10 - Animation

dy is the delay in milliseconds after displaying
the image.

hz,hzdy is the frequency of the frame sound, and
hzdy is the duration. If the duration of hzdy is
longer then the image dy, then dy is used for

the frame and the sound is left on after the frame
ends.

co 1s the replacement color for the BLACK
color pixels defined in the icon.
Restrictions
Use the method Sequence to save the data pointers,
otherwise all created frames will be lost.
See also
ResetSequence, ResetFrame
Example

VAR apple : AnimateObiject;

Apple.Init;
Apple.Addframe (@imageblankbut,-15,0,14,37,10,0,0,black);
Apple.Animate (5);

CurrentFrameNumber Function Method ANIMATE

Function
Returns the current frame number.
Declaration
CurrentFrameNumber
Result type
word.
See also
ResetFrame

AnimateInit Procedure Method ANIMATE

Programmer's Reference Guide - 179 - TEGL Windows Toolkit

Chapter 10 - Animation

Function
Replicates the first active screen page to the second
in preparation for animating.
Declaration
AnimateInit
See also
ResetFrame
Animate Procedure Method ANIMATE

Function
Begins the Animation Sequence.

Declaration
Animate (numframe : word)

Remarks
numframe is the number of frames to animate. If
the number of frames in a sequence is less then the
requested numframe, then the sequence loops to the
beginning.

Restrictions

Since animate uses two video pages, the method
AnimateInit must be called to replicate the first page
to the second.

See also
ResetFrame, Destination

Complete Procedure Method ANIMATE
Function
Closes the Animation Sequence.
Declaration
Complete
Remarks

Complete toggles the sound off and resets the
frame to the beginning.

Example Animation

Programmer's Reference Guide - 180 - TEGL Windows Toolkit

Chapter 10 - Animation

{SF+}
USES Graph, crt, SoundUnt, FastGrph, TEGLUnit, Animate, TEGLIcon;
VAR BouncelIcon : AnimateObject;
BEGIN
EGA640x350x16;

setfillStyle(widedotfill, lightgray);
bar (0,0, getmaxx, getmaxy) ;

with BounceIcon do
begin

init;

addframe (@imageblankbut,-15,-3,14,37,10,0,0,black);

addframe (@imageblankbut,-15, 3, 14 37 lO O O black)
addframe (@imageblankbut,-15,3,14,37,10,0,0,black);
addframe (@imageblankbut, -15, —3 14 37 lO O O black);

(1)

sequence

ResetSequence;

addframe (@imageblankbut,15,-3,14,37,10,0,0,black);
addframe (@imageblankbut, 15, 3, 14 37 lO O O black)
addframe (@imageblankbut,15,3,14,37,10,0,0,black);
addframe (@imageblankbut, 15, —3 14 37 lO O O black);
sequence (2) ;

Animateinit;
Origin (getmaxx div 2,getmaxy div 2);

ClearKeyBoardBuf;
while not keypressed do
begin
sequence (1) ;
ResetFrame (0) ;
Animate (Destination (36,0));
Beep (1500,1,1);

sequence (2) ;
ResetFrame (0) ;
Animate (Destination (560,0));
Beep (1500,1,1);
end;
end;

ABORT ('BYE...");
END.

Programmer's Reference Guide - 181 - TEGL Windows Toolkit

Chapter 10 - Animation

Programmer's Reference Guide - 182 - TEGL Windows Toolkit

Chapter 11 - Writing Text

Writing Text

TEGL Windows Toolkit provides the tools to write to the screen using
proportional bit-mapped fonts. Fonts may be as small as 5 pixels high and
3 pixels wide or as large as 24 pixels high and 8 pixels wide.

Both BGI vector fonts and TEGL bit-mapped fonts may be used together.
Like TP's OutTextXY procedure, TEGLOutTextXY is affected by

the SetTextJustify procedure. To turn off the Proportional

print, use the procedure SetProportional (false).

TEGLWrt Variables

Bit-mapped Fonts

There are 25 bit-mapped fonts available in the TEGLWrt unit.
They are:

FONT09, FONT14, COUNTDWN, OENGLISH, SCRIPT, OCR, FRAKTUR, ITALIC, GEORGIAN,
APLS7, PC9, GAELIC, LITALIC, PC24, PC3270, M3270, EGA09, FUTURE, BROADWAY,
SCRIPT2, LCDFONT, LIGHT14, BRDWX19, SANSX19, WNDWX19, LIGHTO.

To select a font, just pass the address to SetTEGLFont.
i.e. SetTEGLFont (@COUNTDN) .

Creating Your Own Bit-mapped Fonts
You can create and add your own fonts by modifying the assembler files
then assembling the new font to to an object file. Each bit in a byte

represents a pixel of the font.

The format of a TEGL font is:

1 byte header - indicating the height of the font.
Each character is:

1 byte - proportional font width
n bytes - defined by the 1 byte header

TEGLWrt Functions and Procedures

OutTEGLTextXY Procedure FASTGRPH

Programmer's Reference Guide - 183 - TEGL Windows Toolkit

Chapter 11 - Writing Text

Function

Writes mystr to the graphics screen at x,vy.
Declaration

OutTEGLTextXY (x,y : integer; mystr : string)
Remarks

OutTEGLTextXY is affected by the justification
settings set by SetTextJustify and color by
SetColor.

X,y 1s the coordinates of the graphic screen.
mystr is the text string for output.

FontTable is a global variable which is used to
set the pointer to an internal font table.

See also
TEGLWrtChar

Example

SetTextJustify (CenterText,CenterText);

SetColor (green) ;

SetTEGLFont (@Script) ;

OutTEGLTextXY (100,100, 'TEGL Systems Corporation');

TEGLTextWidth Function FASTGRPH

Function
Returns the proportional width of mystr.
Declaration
TEGLTextWidth (mystr : string)
Result type
integer size of mystr.
Remarks
TEGLTextWidth will scan and total the exact number
of pixels mystr will occupy.
Restrictions
Any unprintable characters will not be included in the
final size.
See also

Programmer's Reference Guide - 184 - TEGL Windows Toolkit

Chapter 11 - Writing Text

TEGLCharWidth, TEGLCharHeight

TEGLCharWidth Function

FASTGRPH

Function
Declaration
Result type

Remarks

Restrictions

See also

Returns the proportional width of a character.
TEGLCharWidth(c : word)

Word.

c is the ordinal value of the character.

TEGLCharWidth will return a value based on the
currently selected font.

Characters outside the 28-126 ascii code will return a
invalid size.

TEGLTextWidth, TEGLCharHeight

TEGLCharHeight Function

FASTGRPH

Function
Declaration
Result type

Remarks

See also

Returns the height of the proportional font.
TEGLCharHeight
Word.

TEGLCharHeight will return to the first byte in
the font table which is the height of the current font.

TEGLTextWidth, TEGLCharWidth

TEGLWrtChar Procedure

FASTGRPH

Programmer's Reference Guide - 185 - TEGL Windows Toolkit

Chapter 11 - Writing Text

Function

Declaration

Remarks

See also

Writes a single character to the graphics screen.
TEGLWrtChar (c,x,y,color:word)

X,y specifies the coordinates for writing the
character.

c 1s the ascii code of the character. Valid
character range is 28-126.

color is color of the output character.

TEGLOutTextXY

SetProportional Procedure FASTGRPH

Function
Switch Proportional font on or off.
Declaration
SetProportional (onoff:boolean)
Remarks
Default is proportional font on TRUE. If
proportional font is off FALSE, the spacing is 8
bits.
SetTEGLFont Procedure FASTGRPH
Function
Sets the font to use in subsequent calls to
OutTEGLTextXY.
Declaration
SetTEGLFont (P : Pointer);
Remarks

This procedure simply sets the FontTable variable
to the address in P.

Programmer's Reference Guide - 186 - TEGL Windows Toolkit

Chapter 11 - Writing Text

UnderLineChar Function FASTGRPH
Function
Returns the character with the high bit set.
Declaration
UnderLineChar (c : Char): Char;
Remarks
OutTEGLTextXY detects characters with the high bit
set and underlines them.
Restrictions

Underline does not work with TEGLWrtChar.

Underline does not work on characters with decenders.

Showing ALL Fonts FONTTEST.PAS

The TEGLSam.PAS demonstration program uses the FontTest unit to
display all available fonts, or, individual fonts by selecting from a menu.

FontName Function

FONTTEST

Function
Declaration
Result type

Remarks

See also

Returns the name of a font.
FontName (fontnum:word) ;
string.

FontName is used to build the menu for selective
display of fonts.

ShowOneFont, ShowFonts

ShowOneFont Event

FONTTEST

Programmer's Reference Guide - 187 - TEGL Windows Toolkit

Function

Remarks

See also

Chapter 11 - Writing Text

An Event that displays a font based on
MouseClickPos”.ClickNumber.

FontName is used to build the menu for selective
display of fonts. The entries are positional, thereby
each menu MouseClickPos selection corresponds to a
fontnumber.

FontName, ShowFonts

ShowFonts Event

FONTTEST
Function
A TEGL Event that displays all fonts.
Declaration
ShowFonts (Frame:imagestkptr; Ms: MsClickPtr) : word;
Remarks

See also

A TEGL Event that displays all the available fonts and
their respective names.

FontName, ShowOneFont

Programmer's Reference Guide - 188 - TEGL Windows Toolkit

Chapter 12 - Event Library

Event Library

Although we call it a library, the Event's covered here span over several
units.

The event library contains events that may be used immediately in
programming an application.

The File Selector

The file selector SelectaFile provides a dialogue event, that
displays the files of a directory and lets the user select one of the
existing files or enter a new file name.

The file selector dialogue box allows the user to choose any displayed file
either by clicking on the file name and then clicking on the OK button or by
clicking on the selection area and typing in the filename.

To change directories, position the mouse cursor at a directory filename
and click or click at the bar at the top of the file selector window and
type in the directory path.

SelectaFile will return the full file name, including the directory
prefix, for the file selected. If the Cancel button was clicked
or no file was selected, the file name returned will be an empty string.

SelectaFile function SELECTFL

Function
Provides a file selection dialogue that allows a user
to choose or create a new filename.

Declaration
Selectafile(x,y:word; var path,fileselected:
string)

Result type
boolean. True if a file was selected. False if no file
was selected or the mouse clicked on the cancel button.

Remarks
X,y 1s the coordinates where the file selection
dialogue will be displayed.

path is the original directory path specification.
Use a global string variable to retain the last
directory path.

Programmer's Reference Guide - 189 - TEGL Windows Toolkit

Chapter 12 - Event Library
fileselected will contain the selected path and

filename, if the function returns True.
Example

function FileSelect (Frame:imagestkptr;

MouseClickPos: msclickptr) : word;
var x,y,x1,yl : word;
IF'S : imagestkptr;
selected : boolean;
selectedfile : string;
begin
selected := selectafile(100,100,path,selectedfile);
hidemouse;
x = 10;
y := 60;
x1l := x+500;
yl := y+100;

PushImage (x,y,x1,vy1);
IFS := stackptr;
shadowbox (x,y,x1,vy1l);
setcolor (black);

if not selected then
outTEGLtextxy (x+5,y+3, '"No file were selected.')

else
begin
outTEGLtextxy (x+5,y+3, '"The file selected is:');
FONTTABLE := @FONTO09;
outTEGLtextxy (x+5,y+17,selectedfile);
FONTTABLE := @fontl4;
end;

Putpict (x+280,y+75, @imageok, black) ;

DefineMouseClickArea (IFS,280,75,280+35,75+12, true,
nilunitproc,MSCLICK) ;

setmouseposition (x+290,y+85);

showmouse;

while CheckforMouseSelect (IFS)=nil do;

hidemouse;

dropstackimage (ifs);

showmouse;

fileselectionoption := 1;
end;

Programmer's Reference Guide - 190 - TEGL Windows Toolkit

Chapter 12 - Event Library

String Editing Dialog

The EditString procedure provides a facility for getting text input

from the user. The file selector uses this routine to get a new filename.
EditString Procedure SELECTFL
Function
Provides string input facility.
Declaration
EditString (fs:imagestkptr; x,y,maxlen : word;
var textstr : string)
Remarks
fs is of the type imagestkptr, created by
pushimage.
X,y 1s the relative coordinates from the upper
left of fs where a blinking vertical bar and text
input will be displayed.
maxlen is the number of maximum number of input
characters.
textstr is the user input string.
Restrictions
String editing should be on the topmost window.
Example

VAR mystring;

pushimage (100,100,150,150);
FONTTABLE := @FONT14;
Editstring(stackptr,5,5,12, mystring);

Mouse Sensitivity Dialogue Window

The mouse sensitivity dialogue box allows the user to change the horizontal,
vertical and threshold settings of the mouse. The dialogue box consists of
radio type buttons that can adjust the numeric counters.

Programmer's Reference Guide - 191 - TEGL Windows Toolkit

Chapter 12 - Event Library

SetMouseSense Procedure SENSEMS

Function
Provides a mouse sensitivity dialogue window that
allows the user to change the sensitivity setting of
the mouse.

Declaration
SetMouseSense (x,y:word)
Remarks
X,y 1s the coordinates where the SetMouseSense
dialogue will be displayed.
Restrictions
The dialogue does not check if the mouse is present.
Example

function AskMouseSense (Frame:imagestkptr;

MouseClickPos: msclickptr) : word;
begin
SetMouseSense (160, 75);
AskMouseSense := 1;
end;

Bells & Whistles, Sound Unit

The AskSoundSense dialogue window allows the user to change the duration
of the beeps and whistle settings of the sound unit. The dialogue box consists
of radio type buttons that can adjust the numeric counters.

AskSoundSense Event SOUNDUNT

Function
A sound duration dialogue event

Remarks
An event that displays a dialogue box that permits the
user to set the sound duration for beeps and whistles.

Programmer's Reference Guide - 192 - TEGL Windows Toolkit

Chapter 12 - Event Library

Beep Procedure SOUNDUNT

Function
Toggles the sound on for a specific tone and
duration for n times.

Declaration
beep (tone,n,duration:integer)

Remarks
tone specifies the frequency of the emitted sound
in hertz.

n specifies the number of times the sound it
toggle on and off.

duration specifies the length in milliseconds of
the sound.

See also
SlideBeep, SoundSwitch

Example

beep (1000, 3,100) ;

SlideBeep Procedure SOUNDUNT
Function

Performs a sliding type of sound. Whistle type.
Declaration

slidebeep (tonel, tone2, n:integer)
Remarks

tonel specifies the initial frequency of the
emitted sound in hertz. tone2 specifies the second
frequency from which tonel steps towards.

n specifies the number of times the slide beep
occurs.

See also
Beep, SoundSwitch

Programmer's Reference Guide - 193 - TEGL Windows Toolkit

Chapter 12 - Event Library

Example

slidebeep (1000,2000,2);

SoundSwitch Procedure SOUNDUNT
Function
Switches the sound function on/off.
Declaration
SoundSwitch (OnOff:boolean)
Remarks

OnOff switches the sound on True or off
False.

See also
Beep, SlideBeep

Programmer's Reference Guide - 194 - TEGL Windows Toolkit

Chapter 13 - Virtual Memory Manager

Virtual Memory Manager

Graphical images, by their nature, require a tremendous amount of memory
to store and manipulate. Combine this with the DOS limitation of 640k,
writing applications using a graphical environment can be limiting.

Virtual Memory is a concept by which less expensive mass storage devices
(ie. hard disk) may be used as though it were an extension of memory. Then
memory is only limited by the size of the hard disk.

The TEGL virtual memory manager may be used within your application
program independent of its use within the TEGL window manager.

In this chapter, we provide technical information for advanced
programmers. We'll cover topics such as the Virtual Memory Manager, Turbo
Pascal's heap manager, Expanded Memory Manager, calling conventions, and
more.

The Turbo Pascal Heap manager is covered in greater detail in the Turbo
Pascal Reference Guide, Chapter 15, Inside Turbo Pascal.

Heap Management

With Window Management routines, the memory requirement is unknown. If we
were to attempt to ensure that memory is available for every window that
is created within the program, we would have an unwieldy and unjustifiably
large program. In actual fact, any modest application would require much
more memory than is available.

Rather then attempting to reserve a fixed amount of memory space, which
places a limitation on the program, the heap provides the facility of
allocating memory dynamically. The heap permits us to allocate memory only
when it is required and to release the memory when the task is completed.

The Turbo Pascal Heap Manager

In Turbo Pascal the heap is all the remaining memory that is left when
a program is executed.

Memory is allocated from the heap starting with the lowest part of the
heap growing upwards. The bottom of the heap is stored in the wvariable
HeapOrg. Each time a block of memory is allocated on the heap (via New
or GetMem), the heap manage moves HeapPtr upward by the size of

the requested block.

The top of the heap, or the maximum size of the heap is controlled by the
variable FreePtr. It does not point directly at the maximum top,
rather it points at the start of the free pointer chain.

The free pointer chain grows downward as memory blocks are freed. Adjacent
memory blocks are always combined to form larger blocks.

Programmer's Reference Guide - 195 - TEGL Windows Toolkit

Chapter 13 - Virtual Memory Manager

The maximum size of a single block of memory, using Turbo Pascal's heap
manager, is 65519 bytes.

The TEGL Heap Manager

The TEGL Heap Manager allows us to allocate memory blocks that are greater
than 64k. A full EGA screen image (640x350 -16 colors) is approximately
109k.

When a memory request is made to the TEGL Heap Manager, the manager will
attempt to allocate memory between HeapPtr and FreePtr first,
before attempting to find space on the free space list.

Turbo Pascal Heap manager differs from the TEGL Heap Manager in that TP
will search through the free space chain and reuses the first available
memory block that can accommodate the request.

If memory allocation is less then 64k, use Turbo Pascal's GETMem and
Freemem.

Use the TEGL Heap Manager sparingly, as this will reduce the amount of
memory managed by the virtual memory handler (see Resolving Fragments in this
chapter) .

The TEGL Heap Error Function

The HugeHeapError variable allows you to install a heap error function,

which gets called whenever the TEGL heap manager cannot complete an allocation
request. HugeHeapError is a pointer that points to a function with the
following header:

{SF+} {sh function} ReturnHeapError (size: longint) : word; {SF-}

The TEGL heap error function is installed by assigning its address to the
HugeHeapError variable:

HugeHeapError := ReturnHeapError;

The TEGL heap error function gets called whenever a call to TEGLGetMem
cannot complete the request. The Size parameter contains the size of
the block that could not be allocated, and the TEGL heap error function
should attempt to free a block of at least that size.

Depending on its success, the TEGL heap error function may return a 1 or 2.
A return of 2 indicates success and causes a retry (which could also cause
another call to the TEGL heap error function). A return of any other value

Programmer's Reference Guide - 196 - TEGL Windows Toolkit

Chapter 13 - Virtual Memory Manager
will cause TEGLGetMem to return a nil pointer.

The standard TEGL heap error function always returns a 1, causing
TEGLGetMem to return a Nil pointer.

TEGLUnit sets the heap error function to point to the virtual memory
manager. Don't use the heap error function if you are using TEGLUnit,

the virtual memory handler depends on this function to know when its time
to start paging out window buffers.

The TEGL Heap Manager Functions

TEGLGetMem Procedure VIRTMEM

Function
Returns a pointer to a memory block of the specified
size.

Declaration
TEGLGetMem (var Pt: pointer; size: LongInt);

Remarks
Pt is a pointer variable of any pointer type. Size is a
longint specifying the size, in bytes, of the memory
block to allocate.
If there isn't enough free space on the heap to
allocate the memory block, Pt is set to nil. A user
defined run-time error procedure can be used to
intercept any heap errors (see HugeHeapError).
TEGLGetMem is compatible with Turbo Pascal's Memory
manager and may be used interchangeably.

Restrictions

There are actually no restrictions on the size of the
largest block that can be allocated, however, DOS
limits you to the remaining memory after the program is
loaded.

See also
TEGLFreeMem

Example
Allocates and frees a 128k buffer.

Uses VirtMem;
Var buffer : pointer;

begin

Programmer's Reference Guide - 197 - TEGL Windows Toolkit

Chapter 13 - Virtual Memory Manager

TEGLGetMem (buffer,131072);
TEGLFreeMem (buffer,131072);

end.

TEGLFreeMem Procedure VIRTMEM

Function
Frees a memory block and returns the memory back to the
heap manager.

Declaration
TEGLFreeMem (var Pt: pointer; size: Longlnt);

Remarks
Pt is a pointer variable of any pointer type that was
previously assigned by the GetMem or TEGLGetMem
procedure. Size is a longint specifying the size of the
memory block, in bytes, to be freed; it must be
exactly the same number of bytes previously allocated
to that memory block by GetMem or TEGLGetMem.
TEGLFreeMem returns the memory region to the heap.
TEGLFreeMem is compatible with Turbo Pascal's Memory
manager and may be used interchangeably with GetMem or
TEGLGetMem (see Resolving Fragments for
restrictions).

Restrictions

You can use TEGLFreeMem to free memory blocks that were
allocated by Turbo Pascal's Getmem. However, TEGLFreeMem
organizes the free space pointer chain in a sorted
order in order to minimize any free space
fragmentation. If ReserveHugeMinimum is used to
partition the heap, use the respective counterparts to
allocated and free the memory (GetMem/FreeMem,
TEGLGetMem/TEGLFreeMem) .

See also
TEGLGetMem

Expanded Memory Manager (EMM)

The Expanded Memory Manager is a device driver that controls and manages
expanded memory and application programs that use expanded memory.

Expanded memory is memory beyond DOS's 640K-byte limit. The Expanded
Memory specification (EMS) supports up to 32M bytes of expanded memory.

Programmer's Reference Guide - 198 - TEGL Windows Toolkit

Chapter 13 - Virtual Memory Manager

Because the 8086, 8088, and 80286 (in real mode) microprocessors can
physically address only 1M byte of memory, they access expanded memory
through a window in their physical address range.

This is similar to a book, where pages within the book can retain data.
However, Jjust like a book, if you wish to retrieve the data, you must
supply the page number. As well, when you first create the book
(returning a handle) the initial number of pages must be specified. If
you require more pages after the initial allocation, a new book must be
created (Version 3.2 EMS did not provide a function that allows you to
expand the initial allocation with the same handle).

There are approximately 30 EMS functions calls available with EMS Version
4.0; as documented in the specification produced jointly by Lotus
Development Corporation, Intel Corporation, and Microsoft Corporation. A
copy of this documentation (Part number 300275-005) October, 1987, can be
obtained from Intel Corporation, 3065 Bowers Avenue, Santa Clara, CA
95051.

However, EMM Version 3.2 is still widely used as the driver on most systems,

and therefore we are limited in terms of compatibility, to the number of
functions that may be used.

Expanded Memory Functions

EmmInstalled function VIRTMEM
Function
Returns an installed status on the Expanded Memory
Manager.
Declaration
EmmInstalled

Result type
Returns a boolean status of true, if an EMM driver is
installed on the system, false if not installed.
Remarks
This function uses the address that is found in the Int
67H vector to inspect the device header of the presumed
EMM. If the EMM is present, the name field at offset
OAH of the device header will contain the string
EMMXXXXO0 .

Programmer's Reference Guide - 199 - TEGL Windows Toolkit

Chapter 13 - Virtual Memory Manager

EMSPagesAvailable function VIRTMEM

Function
Obtains the total number of expanded memory pages
present in the systems, and the number of those pages
that are not already allocated.

Declaration
EMSPagesAvailable (Var TotalEMSPages,
PagesAvailable: Word)

Result type
Returns a return code of 0 if EMM software is
successful. A return code other then 0 indicates a
possible error in the EMM software or a memory hardware

error.
Remarks
This function may be used to determine the number of
pages available before allocating EMS pages.
AllocateExpandedMemoryPages function VIRTMEM
Function
Allocates the requested number of pages (l6k per page)
and returns a handle that is used to reference the
allocated pages.
Declaration

AllocateExpandedMemoryPages (PagesNeeded:Word;
Var Handle:Word)
Result type
Returns a return code of 0 if EMM software is
successful. A return code of $88 indicates that the
requested sh PagesNeeded is greater then the number
of pages that is currently available in the system.
See also
MapExpandedMemoryPages, GetPageFrameBaseAddress,
DeallocateExpandedMemoryPages

MapExpandedMemoryPages function VIRTMEM

Programmer's Reference Guide - 200 - TEGL Windows Toolkit

Chapter 13 - Virtual Memory Manager

Function
Maps one of the logical pages of expanded memory
assigned to a handle onto one of the four physical
pages within the EMM's page frame.

Declaration

MapExpandedMemoryPages (Handle, LogicalPage,
PhysicalPage: Word)

Result type
Returns a return code of 0 if EMM software is
successful. A return code of $8A indicates that the
logical page requested to be mapped is outside the
range of pages that is currently assigned to the
handle.

Remarks
A logical page is one page from the range of pages that
were allocated through the sh
AllocateExpandedMemoryPages procedure. The
logical-page number must be in the range
{0O_._._ .. n -_1}}, where {it n} is the number of

logical pages previously allocated.

A physical page is one of four 16k byte pages, in the
range of 0-3, that may viewed as the window to the
expanded memory. Use sh GetPageFrameBaseAddress to
obtain the segment address to the physical window.

See also
AllocateExpandedMemoryPages,
GetPageFrameBaseAddress, DeallocateExpandedMemoryPages

GetPageFrameBaseAddress function VIRTMEM

Function
Returns the segment address of the page frame used by
the Expanded Memory Manager.

Declaration
GetPageFrameBaseAddress (Var PageFrameAddress:
Word)

Result type
Returns a return code of 0 if EMM software is
successful. A return code other then 0 indicates a
possible error in the EMM software or a memory hardware

Programmer's Reference Guide - 201 - TEGL Windows Toolkit

Chapter 13 - Virtual Memory Manager

error.

Remarks
This is only the segment address of the physical page
frame. Use offsets of $0000 for physical page 0, offset
of $4000 for page 1, offset of $8000 for page 2 and
offset of $C000 for page 3.

See also
AllocateExpandedMemoryPages,
MapExpandedMemoryPages, DeallocateExpandedMemoryPages

DeallocateExpandedMemoryPages function VIRTMEM

Function
Deallocates (releases) the pages of expanded memory
currently assigned to a handle.

Declaration
DeallocateExpandedMemoryPages (Handle: Word)

Result type
Returns a return code of 0 if EMM software is
successful.

Remarks
This function notifies the Expanded Memory Manager that
the application will not be making further use of the
allocated expanded memory pages. This function would
typically be called by a program just before performing
an exit.

See also
AllocateExpandedMemoryPages,
MapExpandedMemoryPages, GetPageFrameBaseAddress.

GetVersionNumber function VIRTMEM

Function
Returns the EMM Version Number in a string format. A
handle.

Declaration
GetVersionNumber (Var VersionString: string)

Result type

Programmer's Reference Guide - 202 - TEGL Windows Toolkit

Chapter 13 - Virtual Memory Manager

Returns a return code of 0 if EMM software is
successful. A return code other then 0 indicates a
possible error in the EMM software or a memory hardware
error.

Remarks
This function returns a EMM Version Number that may be
used to check if the installed EMM will support the
requested functions. However since Version 4.00 of the
expanded memory specification is downward compatible
with Version 3.2, this function is only useful as
information.

GetHandleCountUsed function VIRTMEM

Function
Returns the number of total handles used by all
applications. a handle.

Declaration

Result type

Remarks

GetHandleCountUsed (var NumberOfHandles: Word)

Returns a return code of 0 if EMM software is
successful. A return code other then 0 indicates a
possible error in the EMM software or a memory hardware
error.

The number of available handles depends on the
parameters used to start up the EMM driver, as well as
the number of handles in use by other resident or
multitasking software. The upper limit in Version 4.00
is 255 handles with a lower limit of 32. If the
returned number of handles is zero, the EMM is idle and
none of the expanded memory is in use.

GetPagesOwnedByHandle function VIRTMEM

Function

Declaration

Returns the number of expanded memory pages allocated
to a specific EMM handle.

GetPagesOwnedByHandle (Handle: Word; Var

Programmer's Reference Guide - 203 - TEGL Windows Toolkit

Chapter 13 - Virtual Memory Manager

PagesOwned:word) :

Result type
Returns a return code of 0 if EMM software is
successful.

Remarks
An EMM handle never has zero pages of memory allocated
to it.

Expanded Memory Test Program

program EmsTest;
uses VirtMem;

Var
EmmHandle,
PageFrameBaseAddress,
PagesNeeded,
PhysicalPage,
LogicalPage,
Offset,
ErrorCode,
PagesEMSAvailable,
TotalHandleCount,
PagesOwned,
TotalEMSPages,
AvailableEMSPages: Word;

VersionNumber,
PagesNumberString: string;

Verify: Boolean;

DataPtr : pointer;
FUNCTION HexString (I : word) : string;
FUNCTION HexByte (B : byte) : string;
const HexDigit : ARRAY[0..15] OF Char = '0123456789ABCDEF';
BEGIN
HexByte := HexDigit [B SHR 4]+HexDigit [B AND S$F];
END;
BEGIN
HexString := HexByte (Hi(I))+HexByte (Lo (I));
END;

Procedure Error (ErrorMessage: string; ErrorNumber: Word);
Begin

Programmer's Reference Guide - 204 - TEGL Windows Toolkit

Chapter 13 - Virtual Memory Manager

Writeln (ErrorMessage) ;
Writeln (' ErrorNumber = ',HexString(ErrorNumber));
Writeln ('EMS test program aborting.');
Halt (1) ;
end;
Begin

{ Determine if the Expanded Memory Manager is installed }
If not (EmmInstalled) then
Error ('The LIM Expanded Memory Manager is not installed.',6255);

{ Get Version number}
ErrorCode:= GetVersionNumber (VersionNumber) ;
If ErrorCode<>0 then

Error ('Error trying to get the EMS version number ',Errorcode);
Writeln ('LIM Expanded Memory Manager, version ',VersionNumber);
Writeln;

{ Get the expanded memory page frame address }
ErrorCode:= GetPageFrameBaseAddress (PageFrameBaseAddress) ;
If ErrorCode<>0 then
Error ('Error trying to get the base Page Frame Address.',ErrorCode);
Writeln ('The base address of the EMS page frame is - '+
HexString (PageFrameBaseAddress));
Writeln;

{ Get Available pages. }
ErrorCode:= EMSPagesAvailable (TotalEMSPages,AvailableEMSPages);
If ErrorCode<>0 then

Error ('Error in determining available EMS pages.',Errorcode);

Writeln ('There are ', TotalEMSPages,' pages present in this system.');
Writeln (' ',AvailableEMSPages,' of those pages are available.');
Writeln;

{ Get Handle Count }
ErrorCode:= GetHandleCountUsed (TotalHandleCount) ;
If ErrorCode<>0 then
Error ('Error in getting the Handle Count Used.', ErrorCode);

{ Determine if there are enough pages for this application.}
PagesNeeded:=1;
If PagesNeeded>AvailableEMSPages then

Begin
Str (PagesNeeded, PagesNumberString) ;
Error ('We need '+PagesNumberString+' EMS pages. ' +
'There are not that many available.',ErrorCode);
end;

{ Allocate expanded memory pages for our usage }

ErrorCode:= AllocateExpandedMemoryPages (PagesNeeded, EmmHandle) ;
Str (PagesNeeded, PagesNumberString) ;

If ErrorCode<>0 then

Programmer's Reference Guide - 205 - TEGL Windows Toolkit

Chapter 13 - Virtual Memory Manager

("Exrror in allocating '+PagesNumberString+

' pages for usage.',ErrorCode);

Writeln (PagesNeeded, ' EMS page(s) allocated for the EMS test program.');
Writeln;

Error

{ Map in the required logical pages to the physical pages }
LogicalPage :=0;
PhysicalPage:=0;
ErrorCode:=MapExpandedMemoryPages (EmmHandle, LogicalPage,PhysicalPage);
If ErrorCode<>0 then

Error ('Error in mapping logical pages onto physical pages.',ErrorCode);
Writeln ('Logical Page ', LogicalPage,

' successfully mapped onto Physical Page ',PhysicalPage);

Writeln;

{ Get the number of pages for our handle }
ErrorCode:= GetPagesOwnedByHandle (EmmHandle, PagesOwned) ;
If ErrorCode<>0 then
Error ('Error in getting number of pages Owned by handle.',ErrorCode);
Writeln ('The Total Handle Count is ', TotalHandleCount,
' and the number of Pages owned is ',PagesOwned,'.');
Writeln;

{ Write a test pattern to expanded memory }
For Offset:=0 to 16382 do
Mem|[PageFrameBaseAddress:0ffset] :=0ffset mod 256;

{ Make sure that what is in EMS memory is what we just wrote }
Writeln ('Testing EMS memory.');

Offset:=1;
Verify:=True;
while (Offset<=16382) and (Verify=True) do
Begin
If Mem[PageFrameBaseAddress:0ffset]<>0ffset mod 256 then
Verify:=False;
Offset:=Succ (Offset);
end;

{ If it isn't report the error }
If not Verify then
Error ('What was written to EMS memory was not found during '+
'memory verification test.',0);
Writeln ('EMS memory test successful.');
Writeln;

{ Return the expanded memory pages back to the EMS memory pool }
ErrorCode:=DeallocateExpandedMemoryPages (EmmHandle) ;
If ErrorCode<>0 then

Error ('EMS test program was unable to deallocate '+

Programmer's Reference Guide - 206 - TEGL Windows Toolkit

Chapter 13 - Virtual Memory Manager

'the EMS pages in use.',ErrorCode);
Writeln (PagesNeeded, ' page(s) deallocated.');

Writeln;
Writeln ('EMS test program completed.');
end.

A RAM Disk Driver

Expanded Memory (EMS), in its architecture of multiple pages, is limited
in its use as a direct access heap without complex programming. However,
one of the simplest ways to take advantage of EMS, is to create a EMS ram
disk.

The following EMS RAM Disk functions provides the basics for storing and
retrieving a file from EMS memory.

EMSOpen function VIRTMEM

Function
Opens an EMS Ram Disk file.
Declaration
EMSOpen (MinimumPages:word)
Result type
EMSOpen returns a variable of type EMSFile.

Remarks
EMSFile is predeclared as follows:
type
EMSBlockPtr = “EMSBlock;
EMSBlock = Record
nextblockptr : EMSblockPtr;
Handle : word; {Multiple handles}
EMSPage : word; {Pages allocated}
end;
EMSFile = "EMSFileRec;
EMSFileRec = Record
PageOffset : word; {current offset within page}
BaseAddress : word;
EMSPosition : longint;
TotalPages : word; {Total number of 16k pages}

RootBlkPtr : EMSBlockPtr;

Programmer's Reference Guide - 207 - TEGL Windows Toolkit

Chapter 13 - Virtual Memory Manager

end;

The BaseAddress and PageOffset forms the

pointer to the physical expanded memory page. The
EMSPosition field is the current RAM disk file
position. TotalPages is the total number of

expanded memory pages allocated for this EMS Ram file.
The RootBlkPtr points to the first EMS Block

pointer.

The MinimumPages parameter specifies the initial
allocation, however if more pages are required, as you
write to the EMS Ram file, pages are automatically
allocated as needed. Additional EMS handles and Pages
information are stored in separate EMS Block records
and are chained together.

EMS_Status will return a 0 if the EMS ram file is
allocated successfully; otherwise, it will return a
nonzero error code.

See also
EMSClose

EMSSeek procedure VIRTMEM

Function
Moves the current position of an EMS RAM file to a
specified byte component.
Declaration
EMSSeek (var EMSRamFile:EMSFile; Position:
longint)
Remarks

EMSRamFile is the record type returned by EMSOpen, and
Position is an expression of type longint. The current
EMS Ram file position is moved to the offset

Position. In order to expand the expanded memory pages
allocated, it is possible to EMSSeek any size

beyond the last byte; thus EMSSeek (myramfile,

98304) will automatically allocate, if required, a
total of 6 pages.

EMS_Status will return a 0 if the operation was
successful; otherwise, it will return a nonzero error
code.

Programmer's Reference Guide - 208 - TEGL Windows Toolkit

Chapter 13 - Virtual Memory Manager

Restrictions
EMS Ram file must be open.
See also
EMSBlockWrite, EMSBlockRead, EMSOpen, EMSClose

EMSBlockWrite procedure VIRTMEM

Function
Writes the information pointed to by the Buffer pointer
to the EMS Ram file.
Declaration
EMSBlockWrite (var EMSRamFile:EMSFile; buffer:
pointer; bytestowrite:longint)
Remarks
EMSRamFile is the record type returned by sh
EMSOpen, Buffer is any pointer type, and
Bytestowrite is an expression of type longint.

EMSBlockWrite writes bytestowrite bytes to

the EMSRamFile. Bytestowrite may be greater

than (64k). EMSBlockWrite will automatically

allocate additional EMS Memory pages i1f the current EMS
Ram file position plus Bytestowrite exceeds the
currently allocated expanded memory pages.

The current EMS Ram file position is advanced by
Bytestowrite on completion of EMSBlockWrite.

EMS_Status will return a 0 if the operation was
successful; otherwise, it will return a nonzero error
code.

Restrictions
EMS Ram file must be open.

See also
EMSSeek, EMSBlockRead, EMSOpen, EMSClose

EMSBlockRead procedure VIRTMEM

Function
Reads from the EMS Ram file to memory pointed to by the

Programmer's Reference Guide - 209 - TEGL Windows Toolkit

Chapter 13 - Virtual Memory Manager

Declaration

Remarks

Restrictions

See also

buffer pointer.

EMSBlockRead (var EMSRamFile:EMSFile; buffer:
pointer; bytestoread:longint)

EMSRamFile is the record type returned by sh
EMSOpen, Buffer is any pointer type, and
Bytestoread is an expression of type longint.

EMSBlockRead reads bytestoread bytes to the

memory area pointed to by Buffer. Bytestoread

may be greater than (64k). EMSBlockRead will read

past the end of Ram file and automatically allocate
additional EMS Memory pages if the current EMS Ram file
position plus Bytestoread exceeds the currently
allocated expanded memory pages.

The current EMS Ram file position is advanced by
Bytestoread on completion of EMSBlockRead.

EMS_Status will return a 0 if the operation was
successful; otherwise, it will return a nonzero error
code.

EMS Ram file must be open.

EMSBlockWrite, EMSSeek, EMSOpen, EMSClose

EMSClose procedure

VIRTMEM

Function

Declaration

Remarks

See also

Close an Open EMS Ram file.
EMSClose (var EMSRamFile:EMSFile)

EMSRamFile is the record type returned by sh
EMSOpen.

EMS_Status will return a 0 if the operation was
successful; otherwise, it will return a nonzero error

code.

EMSOpen

Programmer's Reference Guide - 210 - TEGL Windows Toolkit

Chapter 13 - Virtual Memory Manager

Virtual Disk Heap

A virtual Disk Heap allows you to simulate a heap using a sequential file.
Allocating and freeing space within the Virtual Disk Heap are
automatically maintained, with all the flexibility of a real memory heap
manager and the unlimited space of a hard disk. The virtual Disk Heap
manager has the ability to reuse free space, as well as merging adjacent
free space fragments.

In addition the virtual disk heap (disk mode) can be used as a simple
graphical image database manager. The stored images may be retrieved later
by referring to a unique signature that you provide.

VDskOpenHeapFile function VIRTMEM

Function
Opens a heap file on disk.
Declaration
VDskOpenHeapFile (VDskFileName : string;
VDskAttribute:word)
Result type
VDskOpenHeapFile returns a variable of type

VDskFile.
Remarks
VDskFileName is a string type expression that
contains the name of heap file and VDskAttribute
is the attribute that is associated with the file. The
following VDskAttribute constants are declared:
CONST
VDskReadWrite = 1;
VDskTemporary = 2;
VDskOpenHeapFile will create a new file if the
file does not exist. If VDskReadWrite is specified,
the file is not erased when the file is closed. if
VDskAttribute is set to VDskTemporary, the file is
automatically erased when the file is closed.
VDSKFile is declared as follows:
type
VDskFreePtr = ~VDskFreeRecord;

VDskFreeRecord = Record

Programmer's Reference Guide - 211 - TEGL Windows Toolkit

Chapter 13 - Virtual Memory Manager

NextVDskFree : VDskFreePtr;

StartBlock : longint;
EndBlock : longint;
Signature : Signate;
BlockFree : boolean;
end;
VDskFile = "VDskFileRecord;
VDskFileRecord = Record
VDskFreePtrChain : VDskFreePtr;
VDskTopOfFile : longint;
VDskAttribute . word;
Case EMSType : boolean of
false : (VDskHeapFile: File);
true : (VEMSHeapFile: EMSFile);
end;

VDskFreePtrChain maintains a complete list of all
blocks that are allocated and freed. Information
regarding each block are stored in a chain of
VDskFreeRecord. The VDskTopOfFile is the

position of the end of the heap file. If there are no
free space fragments before the end of the heap file to
satisfy the requested block size, space is allocated
starting at VDskTopOfFile. VDskAttribute is

the passed parameter when the file was opened. The
EMSType sets the variant portion to either disk or EMS
memory.

StartBlock and EndBlock is the starting and
ending address of the allocated or freed block,

respectively. Signature is a unique type of a 4
character string that can be used as a search string to
locate an address of a block. Blockfree indicates

whether the block is allocated or free.

VDSKStatus will return a 0 if the operation was
successful; otherwise, it will return a nonzero error
code.

See also

VEMSOpenHeapFile, VDskCloseHeapFile

VEMSOpenHeapFile function VIRTMEM

Programmer's Reference Guide - 212 - TEGL Windows Toolkit

Chapter 13 - Virtual Memory Manager

Function
Opens a heap file in EMS.

Declaration
VEMSOpenHeapFile

Result type
VEMSOpenHeapFile returns a variable of type
VDskFile.

Remarks
VEMSOpenHeapFile creates the same structure as
VDskOpenHeapFile, with the EMSType set to EMS
memory.

VDSKStatus will return a 0 if the EMS operation was
successful; otherwise, it will return a nonzero error
code.

See also
VDSKOpenHeapFile, VDskCloseHeapFile

VDSKGetMem function VIRTMEM

Function
Allocates a block within the virtual heap memory and
returns a virtual heap address.

Declaration
VDskGetMem (var VDskPacket:VDskFile; HeapSize:
longint; signature:Signate)

Result type
VDSKGetMem returns a virtual heap address of

longint.

Remarks
VDSKStatus will return a 0 if the virtual heap
allocation was successfull; otherwise, it will return a
nonzero error code.

Restrictions

The Virtual Heap memory must be opened.
See also

VDSKFreeMem, VDskWriteHeapData,

VDskReadHeapData

Programmer's Reference Guide - 213 - TEGL Windows Toolkit

Chapter 13 - Virtual Memory Manager

VDSKFreeMem procedure VIRTMEM

Function
Frees the virtual heap memory pointed to by the
VDskHeapPtr.

Declaration
VDskFreeMem (var VDskPacket:VDskFile; VDskHeapPtr:
longint)

Remarks
VDskPacket is the record type returned by
VEMSOpenHeapFile or VDskOpenHeapFile. The
VDskHeapPtr must be the virtual disk pointer from
VDskGetMem.
VDSKStatus will return a 0 if the virtual heap
de-allocation was successful; otherwise, it will return
a nonzero error code.

Restrictions

The Virtual Heap memory must be opened.
See also
VDSKGetMem, VDskWriteHeapData, VDskReadHeapData

VDSKWriteHeapData procedure VIRTMEM

Function
Writes the data from memory pointed to by the
DataPtr to an allocated wvirtual heap memory

VDskHeapPtr.
Declaration
VDskWriteHeapData (var VDskPacket:VDskFile;
DataPtr:pointer; VDskHeapPtr:longint)
Remarks

VDskPacket is the record type returned by
VEMSOpenHeapFile or VDskOpenHeapFile. The

DataPtr is of a pointer type that points to a memory
buffer that will be written out to the virtual heap.
The VDskHeapPtr must be the virtual heap pointer
created from VDskGetMem.

VDSKStatus will return a 0 if writing to the virtual
heap was successful; otherwise, it will return a
nonzero error code.

Restrictions

Programmer's Reference Guide - 214 - TEGL Windows Toolkit

Chapter 13 - Virtual Memory Manager

The Virtual Heap memory must be opened.
See also
VDSKGetMem, VDskFreeMem, VDskReadHeapData

VDSKReadHeapData procedure VIRTMEM

Function
Reads the data from the virtual heap memory to a memory
area pointed to by the DataPtr.

Declaration
VDskReadHeapData (var VDskPacket:VDskFile;
DataPtr:pointer; VDskHeapPtr:longint)

Remarks
VDskPacket is the record type returned by
VEMSOpenHeapFile or VDskOpenHeapFile. The
DataPtr is of a pointer type that points to a memory
buffer that will be overwritten by the transfer of data
from the virtual heap. The VDskHeapPtr must be the
virtual heap pointer created from VDskGetMem.

VDSKStatus will return a 0 if writing to the virtual
heap was successful; otherwise, it will return a
nonzero error code.

Restrictions
The Virtual Heap memory must be opened.

See also
VDSKGetMem, VDskFreeMem, VDskWriteHeapData

VDskCloseHeapFile procedure VIRTMEM
Function
Closes a virtual heap.
Declaration
VDskCloseHeapFile (var VDskPacket:VDskFile)
Remarks

VDskPacket is the record type returned by
VEMSOpenHeapFile or VDskOpenHeapFile.

VDSKStatus will return a 0 if the virtual heap

Programmer's Reference Guide - 215 - TEGL Windows Toolkit

Chapter 13 - Virtual Memory Manager

operation was successful; otherwise, it will return a
nonzero error code.

See also
VEMSOpenHeapFile, VDskOpenHeapFile

The Virtual Heap Error Function

The VDskError variable allows you to install a virtual heap error
function, which gets called whenever the TEGL heap manager cannot complete
an allocation request. VDskError is a pointer that points to a

function with the following header:

{SF+} {sh function} ReturnHeapError (code: longint) : word; {SF-}

The virtual heap error function is installed by assigning its address to
the VDskError variable:

VDskError := ReturnHeapError;

The virtual heap error function gets called whenever any virtual function
calls is unable to complete the request. The code parameter contains

a code indicating which virtual heap function is in error. Check
VDSKStatus to determine the severity of the error.

The standard virtual heap error function is set to return to the calling
procedure.

If you are using the Virtual memory manager (next section), use the
virtual memory error function rather then this error function to intercept
virtual errors. The virtual memory manager relies on the standard g

return to the calling procedure to check VDSKStatus to indicate

whether to write to EMS or disk file.

The Virtual Memory Manager

The virtual memory manager is in constant use by TEGL windows to provide
memory extensions for graphical images. Your program may use the virtual
memory functions as an external heap, with the restriction that you do
close the virtual memory file.

The following virtual memory functions will automatically select the
storage medium when moving data to virtual memory. The data is moved to
expanded memory if adequate space can be found, otherwise the data is

Programmer's Reference Guide - 216 - TEGL Windows Toolkit

Chapter 13 - Virtual Memory Manager

moved to one of the mass storage mediums. Both storage medium (EMS and
Hard disk) are used i1f available.

UseHardDisk procedure VIRTMEM

Function
This function forces the virtual memory manager to use
the hard disk as virtual memory, even if EMS is

available.
Declaration
UseHardDisk (yesno:boolean)
Remarks
if the yesno is true, then the virtual memory
manager will ignore the installed EMS, and only use the
hard disk.
VDSKStatus will return a 0 if the virtual memory
operation was successful; otherwise, it will return a
nonzero error code.
MoveFromVirtual procedure VIRTMEM
Function
Moves a block of data from virtual back to normal
memory.
Declaration
MoveFromVirtual (DataPtr:pointer; VirtualHeapPtr:
longint)
Remarks

The DataPtr is any memory block allocated by
GetMem or TEGLGetMem. VirtualHeapPtr is of

the type longint, which is the address supplied by
MovetoVirtual.

VDSKStatus will return a 0 if the virtual memory
operation was successful; otherwise, it will return a
nonzero error code.

See also
MoveToVirtual, FreeVirtual

Programmer's Reference Guide - 217 - TEGL Windows Toolkit

Chapter 13 - Virtual Memory Manager

MoveToVirtual function VIRTMEM

Function
Moves a block of data from memory to virtual memory.
Declaration
MoveToVirtual (DataPtr:pointer; HeapSize:
longint)
Result type
MoveToVirtual returns a longint type, which is a
physical address of the virtual block.
Remarks
The DataPtr is any memory block allocated by
GetMem or TEGLGetMem. HeapSize is of the
type longint, which is the size of the memory block
that you are moving to virtual memory.

MoveToVirtual will automatically allocate EMS
memory pages and open any virtual memory files (if
needed) 1f this is the first time call to this
procedure.

VDSKStatus will return a 0 if the virtual memory
operation was successful; otherwise, it will return a
nonzero error code.

See also
MoveFromVirtual, FreeVirtual

FreeVirtual procedure VIRTMEM

Function
Frees the virtual memory back to the virtual memory
pool for reuse.
Declaration
FreeVirtual (VirtualHeapPtr:longint)
Remarks
VirtualHeapPtr is of the type longint, which is
the address supplied by MovetoVirtual.

VDSKStatus will return a 0 if the virtual memory
operation was successful; otherwise, it will return a

Programmer's Reference Guide - 218 - TEGL Windows Toolkit

Chapter 13 - Virtual Memory Manager

nonzero error code.
See also
MoveToVirtual, MoveFromVirtual

CloseVirtual procedure VIRTMEM
Function
Closes the virtual memory manager.
Declaration
CloseVirtual
Remarks
CloseVirtual shuts the operation of the virtual
memory manager. The shut down procedure includes
releasing allocated expanded memory pages and closing
external virtual files.
VDSKStatus will return a 0 if the virtual memory
operation was successful; otherwise, it will return a
nonzero error code.
Restrictions
The procedure should not be called if the TEGLUnit is
used.
TEGLMaxAvail Function VIRTMEM
Function
Returns the size of the largest block available in the
upper heap.
Declaration
TEGLMaxAvail : LonglInt;
VirtualMemUsed Function VIRTMEM

Function

Programmer's Reference Guide - 219 - TEGL Windows Toolkit

Chapter 13 - Virtual Memory Manager

Returns the amount of virtual memory allocated.
Declaration
VirtualMemUsed : LonglInt;
Remarks
This is the total of virual memory allocated. On some
systems this can be a combination of both EMS and
Disk memory.

The Virtual Memory Error Function

The VirtualError variable allows you to install a virtual memory
error function, which gets called whenever the virtual memory manager
cannot complete a virtual function request. VirtualError is a pointer
that points to a function with the following header:

{SF+} {sh function} ReturnVirtualError (code: longint) : word; {SF-}

The virtual memory error function is installed by assigning its address to
the VirtualError variable:

VDskError := ReturnVirtualError;

The virtual memory error function gets called whenever any virtual
function calls is unable to complete the request. The code parameter
contains a code indicating which virtual heap function is in error. Check
VDSKStatus to determine the severity of the error.

The standard virtual memory error function is set to return to the calling
procedure.

Resolving Fragments

The memory used by the heap is a dynamic and volatile part of your program.
Memory is constantly allocated and de-allocated by the window manager along
with allocation of dynamic variables, free space records, frame records,
mouse click records, etc.

Although the virtual memory manager will provide almost unlimited windows,
the concept is still limited by the number of window records that will fit
in memory and whether the memory is contiguous or fragmented by allocated
memory not under the control of the virtual memory manager.

Fragmentation occurs, when free memory blocks are separated by allocated
blocks. Since certain allocated memory blocks cannot be moved or

Programmer's Reference Guide - 220 - TEGL Windows Toolkit

Chapter 13 - Virtual Memory Manager

de-allocated, fragmentation can cut down the largest block size available
from the heap.

Without a proper control on memory fragmentation, an out of space error
can still occur even when the virtual memory manager pages out all window
images.

In order for the virtual memory Manager to provide large contiguous memory
on the heap, two memory managers are used to partition the main heap
memory. The normal Turbo Pascal heap manager is used to allocate simple
memory blocks like frame information and virtual pointer information. The
second, is the TEGL heap manager, used by the window manager to allocated
large image buffers.

The function ReserveHugeMinimum partitions the heap memory into

two parts by allocating a single byte between the minimum and upper memory.
Normal allocations using Turbo Pascal Getmem will default to the lower areas by
the methods that TP's uses to allocate memory. Turbo pascal will begin using
the upper area when all lower memory area is used, thus it is not a restriction
on TP's Getmem.

TEGLGetMem will only allocate memory from the upper areas.

ReserveHugeMinimum provides an elegant solution, that allows both
memory managers to coexist.

ReserveHugeMinimum procedure VIRTMEM

Function
Partition the heap memory into lower and upper areas to
reduce fragmentation.

Declaration
ReserveHugeMinimum (MinimumSize : longint)

Remarks
MinimumSize is of the type longint, which is the
size calculated by adding (60 bytes for a window
record) + the average mouse click and key
clicks areas per window (20 bytes per each defined
click) multiplied by the maximum number of window
records opened at the same time + 4000 bytes (overhead
for the virtual memory manager) plus any heap memory
requirements by the application.

You are not expected to calculate the exact
MinimumSize, but as a general rule of thumb, it seems
that 12k is effective for most applications.

Programmer's Reference Guide - 221 - TEGL Windows Toolkit

Chapter 13 - Virtual Memory Manager

Programmer's Reference Guide - 222 - TEGL Windows Toolkit

Chapter 14 - Sizing and Sliders
Sizing and Sliding

The chapter has the procedures and functions that give the core for
resizing frames and attachings sliders to them.

A slider is a moveable switch. They are quite often used to indicate up
and down or left to right scrolls (as in a text editor). They can be
attached to a window but are seperate, that is, they must be disposed of
seperately.

Resizing frames adds a degree of complexity to maintaining frames in that
the contents of the frame are lost when it is resized. Consequently, you
need to code an event that specifically redraws a frame after resizing.

Resizable frames with slider bars require more work. It is up to the
programmer to dispose of and then reattach new sliders to a frame after
a resize. This presumably is all done within the event that redraws the
window. This is not impossible, just careful thought is required when
making these kinds of frames. The results will speak for themselves.

DefineResizeClickArea Procedure TEGLSPEC
Function
Sets a mouse click area for resizing a frame.
Declaration
DefineResizeClickArea(ifs : ImageStkPtr;
Xx,y,x1,yl : Word; ResizeProc : CallProc);
Remarks

The ResizeProc must be defined. You cannot pass a
NIL pointer. When a frame is resized its image is
disposed and must be redrawn.

See also

DefineResizeMinMax.
Example

DefineResizeClickArea(ifs,1,1,10, 6,ReDrawkEditor);

DefineResizeMinMax Procedure TEGLSPEC

Programmer's Reference Guide - 223 - TEGL Windows Toolkit

Chapter 14 - Sizing and Sliders

Function

Declaration

Remarks

See also

Example

Sets the minimum and maximum that a frame can be
resized to.

DefineResizeMinMax (ifs : ImageStkPtr; MinW,
MinH, MaxW,MaxH : Word) ;

MinW is the minimum width the frame is allowed if
resized. MinH is the minimum height, MaxW is the

maximum width, and MaxH is maximum height. Values
are in pixels.

DefineResizeClickArea.

DefineResizeMinMax (ifs,200,100,400,200);

DefineSliderArea Procedure TEGLSPEC

Function

Declaration

Remarks

Restrictions

Defines slider area.

DefineSliderArea(ifs : ImageStkPtr; x,y,x1,vy1l,
minx,miny, maxx,maxy: Word; SlideAction : CallProc);

ifs is the frame the slider is attached to. x,y,

x1, yl is the slider click area. minx, miny, maxx, maxy
are the bounds the slider can be moved in. Coordinates
are frame relative. SlideAction is the event that is
called when the slider is moved.

The MsClickPtr that is passed to SlideAction contains
the new slider position. These coordinates can be used to
determine the correct action to taken.

This procedure only sets the area for the slider and its
bounds. It is up to the programmer to draw the slider bar
and the slider. The slider bar must be drawn before the
call to DefineSliderArea. Then after draw this the

Programmer's Reference Guide - 224 - TEGL Windows Toolkit

Chapter 14 - Sizing and Sliders

slider. The toolkit will look after moving the slider
once it has been drawn.
See also

SetSlidePostion
Example
DropSliders Procedure TEGLSPEC
Function
Removes all sliders from a frame.
Declaration
DropSliders(ifs : ImageStkPtr);
Remarks
DropSliders should be called before you drop a
frame or resize it.
Restrictions
See also
Example

DropSliders (ifs);

FindSliderFS Function TEGLSPEC
Function
Finds a slider on a frame.
Declaration
FindSliderFS(ifs : ImageStackPtr; ms : MsClickPtr):
SliderPtr;
Remarks

Returns the SliderPtr associated with ms on the
frame. This can be used from within an event that is
called when a slider is moved. With the SliderPtr

Programmer's Reference Guide - 225 - TEGL Windows Toolkit

Chapter 14 - Sizing and Sliders

you can determine the relative position of the slider
without having to examine any other variables.

Restrictions
See also
Example
ResizeFrame Procedure TEGLSPEC
Function

Allocates a new buffer for a frame.
Declaration

ResizeFrame (ifs : ImageStkPtr; x,vy,x1,yl : Word);
Remarks

X, y, x1, yl are the new coordinates of the frame.
Restrictions

See also

Example

The frame image is hidden then disposed.

DefineResizeMinMax

SelectAndMoveFrame

Event TEGLSPEC

Function

Declaration

Remarks

See also

An event that allows the frame to be moved.

SelectAndMoveFrame (ifs: ImageStkPtr; ms: MsClickPtr):
Word;

Note that this is an event. You would not directly call
it but rather would pass it with a DefineMouseClickArea.

Programmer's Reference Guide - 226 - TEGL Windows Toolkit

Chapter 14 - Sizing and Sliders
DefineMouseClickArea.
Example
{ -—- the top 10 pixels across the frame ifs is set to SelectAndMoveFrame }

DefineMouseClickArea(ifs,0,0,ifs”.x1,10, TRUE, SelectAndMoveFrame,MSClick) ;

SetSlidePosition Procedure TEGLSPEC
Function

Moves a slider to a new position.
Declaration

SetSlidePosition(ifs : ImageStkPointer; x,y : Word);
Remarks

X,y are relative coordinates within the frame and
must be within the slider bar.

See also
DefineSliderArea.

Programmer's Reference Guide - 227 - TEGL Windows Toolkit

Miscellaneous Functions

Miscellaneous Functions

CheckCtrlBreak Procedure TEGLUNIT

Function
Checks task handler.

Declaration
CheckCtrlBreak;

Remarks
Normally this routine does not have to be called, but
if you have section of code that is going through a
long loop you should insert it there.
If your program has events that are activated after a
certain number of timer ticks have passed then a call
to CheckCtrlBreak will allow their processing.
The TEGL Windows Toolkit does not process timer
interrupt tasks directly, rather a flag is set and
the task is performed when it is safe (ie. no frames
are being updated and no memory swaps are begin
processed) .

Example

VAR x : LonglInt;

FOR x := 1 TO 20000000 DO
BEGIN
{ -- do your stuff }
CheckCtrlBreak; { -=-— allow processing of other tasks }
END;

CheckCtrlBreakFS Procedure TEGLUNIT

Programmer's Reference Guide - 228 - TEGL Windows Toolkit

Miscellaneous Functions

Function
Sets an event to call when Ctrl-Break is pressed.
Declaration
CheckCtrlBreakFS(p : CallProc);
Remarks
P is an event and works like any other. You can
determine within it what processing should take place
(Halt, Continue, Close files, etc..).
Example
See InitTEGL in TEGLEasy.
DropTimerTick Procedure TEGLUNIT
Function
Removes an event set with SetTimerTick.
Declaration
DropTimerTick (Ticks : Word; P : CallProc);
Remarks

Both Ticks and P must be identical to the
orginal call for the event to be removed.
See also
SetTimerTick.
Example

DropTimerTick (18, BackGroundClock) ;

NilUnitProc Event TEGLUNIT
Function

A place holder for events that have not been coded.
Declaration

NilUnitProc;
Remarks

NilUnitProc can be used wherever an event handler

Programmer's Reference Guide - 229 - TEGL Windows Toolkit

Miscellaneous Functions

is called for. This can be a place holder or it can be
where event is desired but a parameter is required.

Example
{ -=- a line in a menu that is never selected or active }
DefineOptions (filem, '--"', false,nilunitproc);
OverLapArea Function TEGLUNIT
Function
Returns the area that is occupied by two sets of
coordinates.
Declaration
OverlayArea (ax, ay, axl, ayl, bx, by, bxl,b yl : Word;
VAR cx, cy, cx1, cyl : Word) : Boolean
Remarks
a and b coodinates are the areas to test.
If they overlap then the area is return in the c
coordinates and the function returns true, otherwise
the function returns false and the ¢ coordinates
are undetermined.
This is an advanced function that normally would not
be used.
SetTimerTick Procedure TEGLUNIT
Function
Sets an event to be called periodically.
Declaration
SetTimerTick (Ticks : Word; p : CallProc;
ifs : ImageStkPtr; ms : MsClickPtr);
Remarks

Ticks is how many timer ticks to wait before

Programmer's Reference Guide - 230 - TEGL Windows Toolkit

Miscellaneous Functions

begin called. p is the event to call. ifs and
ms are passed to p.

See also
DropTimerTick.

Example

SetTimerTick (18, BackGroundClock,NIL,NIL) ;

Programmer's Reference Guide - 231 - TEGL Windows Toolkit

TGraph

TGraph

The TGraph unit provides a subset of the functions in the Graph
unit provided with Turbo Pascal.

TGraph does not have to be used if you are using Turbo Pascal. If your
program requires elaborate graphics drawing and painting then the Graph
unit is needed. If, however, your graphics need are simpler then TGraph
may provide all that is needed. If this is the case your program can be as
much as 25K smaller by using TGraph exculsively. See the appendix
Condtional Compilation for directions on building the toolkit without
using the Graph unit.

If you are programming with Microsoft's Quick Pascal then TGraph is
necessary. Depending on the defines in the file switches.inc (see the
appendix Conditional Compilation) TGraph acts as stand-alone or maps
graphics calls to the equivalent MSGraph routine.

Bar Procedure TGRAPH
Function

Draws a bar using the current fill style and color.
Declaration

Bar(xl, yl, x2, y2: Integer);
Remarks

Draws a filled in bar using the pattern and color
defined by SetFillStyle or SetFillPattern.

See also
SetFillStyle, SetFillPattern

CloseGraph Procedure TGRAPH
Function
Shuts down the graphics system.
Declaration
CloseGraph
Remarks

The screen mode is restored to the original mode before

Programmer's Reference Guide - 232 - TEGL Windows Toolkit

TGraph

graphics were initialized.

DetectGraph Procedure TGRAPH
Function

Detects graphics hardware.
Declaration

DetectGraph (VAR GraphDriver, GraphMode : Integer);
Remarks

See also

Returns the detected driver and mode value that can be
passed to InitGraph which will change to graphics
mode. If no graphics hardware is found or the graphics
hardware is not supported then a call to GraphResult
will return a value of -2 (grNotDetected).

InitGraph, GraphResult

GetBkColor Function TGRAPH
Function
Returns the current background color.
Declaration
GetBkColor : word;
Remarks
Background colors can range from 0 to 15.
See also
GetColor, SetBkColor, SetColor
GetColor Function TGRAPH

Programmer's Reference Guide - 233 - TEGL Windows Toolkit

Function

Declaration

Remarks

See also

TGraph

Returns the color value passed to the previous call to
SetColor.

GetColor : Word;
Drawing colors can range from 0 to 15.

SetColor

GetFillPattern Procedure TGRAPH

Function

Declaration

Remarks

See also

Returns the last fill pattern set by the last call to
SetFillPattern.

GetFillPattern (VAR FillPattern : FillPatternType);
FillPatternType is

TYPE
FillPatternType = array[0..8] of byte;

SetFillPattern, GetFillSettings

GetGraphMode Function TGRAPH
Function
Returns the current graphics mode.
Declaration
GetGraphMode : Integer;
Remarks

See also

Returns the current graphics mode set by InitGraph
or SetGraphMode.

Programmer's Reference Guide - 234 - TEGL Windows Toolkit

TGraph

DetectGraph, InitGraph, RestoreCrtMode,
SetGraphMode

GetMaxX Function

TGRAPH

Function

Declaration

Remarks

See also

Returns the pixel width (minus 1) of the current graphics
driver and mode.

GetMaxX : Integer;

GetMaxX can be used to determine the boundaries of the
screen.

GetMaxY, GetX, GetY

GetMaxY Function

TGRAPH

Function

Declaration

Remarks

See also

Returns the pixel height (minus 1) of the current graphics
driver and mode.

GetMaxY : Integer;

GetMaxY can be used to determine the boundaries of the
screen.

GetMaxX, GetX, GetY

GetTextSettings Procedure TGRAPH

Function

Returns the current text settings.

Programmer's Reference Guide - 235 - TEGL Windows Toolkit

Declaration

Remarks

See also

TGraph

GetTextSettings (VAR TextInfo : TextSettingsType);
TextSettingsType contains fields for the font,
direction, size and justification that was set by
SetTextStyle and SetTextJustify.

SetTextJustify, SetTextStyle

ImageSize Function

\ TGraph

Function

Declaration

Remarks

Returns the number of bytes required to store a
rectangular region of the screen.

ImageSize (x1, yl, x2, y2: Integer): Word;

x1,y1l,x2,yl defines the area on the screen.

GraphResult Functio

n

TGRAPH

Function

Declaration

Remarks

Returns the error code for the last graphics operation.

GraphResult : Integer;

GraphResult is reset to zero after it has been

called. The user may want to store it into a temporary

variable before testing it.

InitGraph Procedure

TGRAPH

Function

Initializes the graphics system and sets the hardware to

Programmer's Reference Guide - 236 - TEGL Windows Toolkit

Declaration

Remarks

See also

TGraph
graphics mode.

InitGraph (VAR GraphDriver : Integer;
VAR GraphMode: Integer; DriverPath : String);

If GraphDriver is equal to 0 (Detect) then a

call is made to DetectGraph. If supported hardware

is detected then the graphics system is initialized and
a graphics mode is selected.

The parameter DriverPath is provided for compatibility
with Graph, it is not used, all drivers are linked in.

DetectGraph, CloseGraph

Line Procedure TGRAPH
Function
Draws a line from x1, yl to x2, y2.
Declaration
Line(x1, yl1l, x2, y2 : Integer);
Remarks
Draws a line in the color set by SetColor
OutTextXY Procedure TGRAPH

Function

Declaration

Remarks

See also

Sends a string to the screen.
OutTextXY (x,y : Integer; TextString: String);

TextString is output at the screen location
X, Y.

OutTextXY uses the options set by SetTextJustify.

SetTextJustify, GetTextSettings

Programmer's Reference Guide - 237 - TEGL Windows Toolkit

TGraph

Rectangle Procedure TGRAPH

Function
Draws a rectangle using the current color.
Declaration
Rectangle(x1, yl, x2, y2 : Integer);
Remarks x1,yl define the upper left corner of the rectangle,
and x2,y2 define the lower right corner.
See also
SetColor

RestoreCrtMode Procedure \ TGraph

Function

Restore the screen mode.
Declaration

RestoreCrtMode;
Remarks

Restore the screen mode to its original state before
graphics was initialized.

See also
DetectGraph, InitGraph

SetBkColor Procedure TGRAPH
Function
Sets the backgound color.
Declaration
Remarks

Background colors may range from 0 to 15.
See also
GetBkColor, SetColor

Programmer's Reference Guide - 238 - TEGL Windows Toolkit

TGraph

SetColor Procedure TGRAPH
Function
Set the drawing color.
Declaration
SetColor (Color : Word);
Remarks
Drawing colors may range from 0 to 15.
See also
GetColor
SetFillPattern Procedure TGRAPH

Function

Declaration

Remarks

See also

Selects a user-defined fill pattern.
SetFillPattern (Pattern : fillPatternType; Color: Word);

Sets the pattern and color for all filling done by
Bar.

GetFillPattern, SetFillStyle

SetFillStyle Procedure TGRAPH
Function
Sets the fill pattern and color.
Declaration
SetFillStyle (Pattern : Word; Color: Word);
Remarks

See also

Set the pattern and color for all filling done by
Bar. There are 12 fill patterns available.

GetFillSettings

Programmer's Reference Guide - 239 - TEGL Windows Toolkit

TGraph

SetTextJustify Procedure

TGRAPH

Function

Declaration

Remarks

See also

Sets text justification values used by OutTextXY.

SetTextJustify (Horiz, Vert:

Word) ;

The default justification settings are SetTextJustify (
LeftText, TopText).

GetTextSettings,

OutTextXY

Programmer's Reference Guide - 240 - TEGL Windows Toolkit

APPENDICES

Appendix A - Overlapping Graphics

There are many methods in creating and managing overlapping windows,
however the end result to the user must be in the context of windows that
form independent layers on a single display.

This section discusses the method that is used with the TEGL Windowing
Manager.

Video Buffers

The video buffer is a block of memory where displayable data is stored. A
program may read and write to the video buffer in the same way it accesses
any other memory.

The video display circuitry updates the screen by continually reading the
data in the video buffer and translating the bit information to the
screen. Each group of bits in the video buffer specifies the color and
brightness of a particular location on the screen. A particular location
on the screen is known as a pixel. If a program changes the contents of
the video buffer, the screen reflects the change immediately.

Because you have control over each pixel in the displayed image, you can
construct complex geometric images, fill arbitrary areas of the screen
with blends of colors, or create animated images that moves across the
screen.

We may think of windows as multiple video buffers, the distinction is that,
with the TEGL Windows Toolkit, only 1 video buffer is used. To create a
window effect, we must physically copy and move display data to and from a
single video buffer, overlaying the images as we would layout images on

paper.
Windows

Windows are simply predefined rectangular areas of the screen. A window
manager is a coordinator that ensures that images related to a window are
saved (stored in memory) before other overlapping images writes to the
screen. When a window is closed, the underlying image is copied back to
screen video buffer.

The basis of a window manager is the copying and restoring of multiple
areas of the screen.

Frames

An EGA video has a maximum resolution of 640 pixels horizontal by 350

Programmer's Reference Guide - 241 - TEGL Windows Toolkit

APPENDICES

pixels. The coordinates are specified as (x,y) and (x1,yl), where x and y
are the horizontal and vertical position respectively. The position is
relative to upper left coordinate which has a coordinate value of (0,0).

(%, Y)
o +
(y)
*
(x)————- >
Fomm e +

A Frame Stack

A frame stack is a list with each entry representing a screen area. Each
entry contains information and data that is required by the window manager
to coordinate the overlaps between frames.

The order of the list is in the same order as the frames are stacked on
the screen.

A Simple Window Manager

This section talks about creating a simple window manager. We will use
the following example to see how we can update frame (A) independent of

the other 3 frames.

The following frames have called PUSHIMAGE to save the underlying
graphics.

S +
e +——+
-t
B | A
D ——+
-t
c |
-t
e T__+
S +

In order for Frame (A) to be updated, the image for Frame (D) is saved, and
Frame (D) 1s erased from the screen
by restoring the the underlying image that was saved previously.

Programmer's Reference Guide - 242 - TEGL Windows Toolkit

The image for Frame

The image for Frame

(C)

(B)

APPENDICES

o _
| B
o _
o _
| ¢
o _

is saved,

is saved,

and Frame (C)

and Frame (B)

is erased from the screen
by restoring the the underlying image that was saved previously.

is erased from the screen
by restoring the the underlying image that was saved previously.

Programmer's Reference Guide - 243 - TEGL Windows Toolkit

APPENDICES

The composite image of (A) is now complete and can be updated. The images
(B), (C) and (D) are restored by reversing the above steps.

In the earlier generations of TEGL, this formed the basis of the stacked
frame concept (the removal of images that overlaps the current).

Partial Image Update

As you can imagine, this process is slow and causes a lot a of unnecessary
updates to the screen. With the foundation of g a simple window manager,

we can now begin to refine this process.

Partial image update is removing only the intersection portion of the
frames from the screen by extracting a section of the saved image.

The following shows the intersection of D,C and B that is needed to
be replaced on the screen.

et

D
fom— +
B |
S +
fom— +
c |
S +

—

Partial Image (D) is replaced first, followed by Partial (C) and (B).
Refined Partial Image Update

Since we are only interested in the composite image of (A), there is still
a lot of unnecessary update to the screen.

Imagine a notepad and you wish to write on the fifth page of the notepad.
The fastest way to lift up five pages in a
group, write, and close the notepad.

So let's split image (D) into 5 pieces.

et
D1 |
—
femb——t
|p2| B
S
et
D3|
—
R

Programmer's Reference Guide - 244 - TEGL Windows Toolkit

APPENDICES

D4 c|
fo—t——t
+-—+
| D5 |
S

Notice the double pages of (D2) (B) and (D4) (C). Now we only need to
replace (D1), (B), (D3), (C) and (D5). We don't need to replace (D2) and
(D4) because (B) and (C) has already restored the composite image of (A).

TEGL was further refined to (cut out) only the pieces that needs to

be replaced, thus removing all unnecessary updates to the screen.

A Refined Partial Image Update Algorithm

check for condition where by replacing the bottom image
will replace the top image. eg.

e +
S S +
R +
|3
S +

o +

Replacing 3 will be redundant, since we want to update 1, replacing 2

will remove both 2 and 3.

check i1if we can begin trim the ends off one of the overlapped
images to reduce the size that we need to replace.

S N N N i N R ——
[e u—— N | |
N e e —_— T_____T___+ +-T ------- + _______T_+
fom + fom + Fom +
fom— e . + Fom— + fom— + fom— +
S S fot Fom—e—m +___T T --------- T T --------- T --------- T
R e e ——t A + S O +
fom— + fom— + fom— +
fom— e . + fom— + fom— + fom— +
EE + EE + EE + | | | |
Fomm + Ammmm + S +
R S I P —_— | | | :
[T ——— e Fomt o +
S S fot Fome—o S + fom— N +
EE + EE + EE + | S +
R +| [T ——— +
| L T

Programmer's Reference Guide - 245 - TEGL Windows Toolkit

APPENDICES

create an new insert that has one end trimmed and repeat steps 1
through 3 to cut the images into the necessary pieces.

F———— + +-
T
te——] ... +=.

t———— + +-

Fe——— +
tm——————
|
Fomm e ——

Ft———— +
[ESEREeS I
f DD

T

Ft———— + +
Fto——— + t———=
Fo——_————— + +
e [Ea—
Ftm——_————— + +

SR + S +
—+ — |+
| R -
R A P -+ | | +
S + Fom +
fom— SR +
EE + |+
———————————— S ISR DR
| T—
------- + oot |
fom— + S +
T + S + +
......... [T I
Fomm e + Fomm e + +
———————— +
o4 |
————— = e + m———— -
S + fom— + +
| fom——m + ———
I e e A
""""" | [P
————— = e e Ft———

Fomm o +
--------- +
|+
_________ + |
Fomm o + 4
—_————— b o
————— o
_________ 4
--------- +
NREE———
| -
R
_________ 4
L |
———————— +
e
P
R

The only time that we are unable to split an overlapping image is when
the image overlaps by 1 pixel.

A Quick Run through the algorithm

The procedure to handle the splitting of images is called

StackOverlaps. StackOverlaps works in the following fashion:
Top (Stackptr)*
S o +o——t Top e
|D |x,y,xl,yl|image|...| e +-=+

—+ t———— +
S N +
| |
--------- +
|
--------- +
tom——— S
-+ |
te———_— ...
———————— +
| +eeee-
e —— +
T |
oIl
Il
+ Fom +
————+t Fmm +
+ o —_—— - +
|-+ il |
+ o - +
Bottom
____________ +

Programmer's Reference Guide - 246 - TEGL Windows Toolkit

PrepareForUpdate (A)

Fo—>

+——>

+>

+>

+-—>

Fo >

APPENDICES

o o — +———t
o o S S
|c |x,v,x1,y1l|image]...| B | A
o o — +---+ D S
o o S
|A |XIYIXlryl|lmage| | ——+
FomFomm fomm o R C |
o o S -+
|a |x,y,x1,y1l|image]...|
o o — S R— o - +——+
Bottom
e +
creates temporary stack entries:
Top (Stackptr)*

o o S
|B1|x,y,x1,yl|image]...|
o o SR
o o S e
|Cl|x,y,xl yl|1mage| | to——— +-—+
FomFomm fomm o N |D1 |
o o S o +
|D1|x,y,x1,yl|image]...| B | &
o o +---+ o +
o o S o +
D |x,v,x1,yl|image]...| jc1 |
o o — +---+ o +
T EE Foe—t |
|C | yYrx1, yl|1mage| | to——— +-—+
S S fomo o N
o o S o
|B |x,v,x1,yl]image]...|
o o +---+
o o S
A |x,y,x1,y1l|image]...|
o o — S R—

Begin Cutting and Eliminating: Comparing only the overlapped images.

Fo—>

o o S
|B1|x,y,x1,yl|image|...| Bottom
et ——_—————— e +———+ Image
o o S
[C1]x,y,x1,yl]image]...|
o o +---+
o o S
|Dl|x,y,xl yl|1mage| | Top Image
o o +---+

+-—+
D1

R

S
D1
-t
B1 |
-t
-t
C1|
-t
+——+

Programmer's Reference Guide - 247 - TEGL Windows Toolkit

APPENDICES

StackOverlaps compares Bl with D1, Bl with Cl and
Cl with D1 for overlaps.

eliminate redundant overlaps

Appendix B - Heap Management

One of the major problems with window management is the amount of dynamic
memory that is allocated and de-allocated. Memory is constantly
fragmented with records, dynamic variables, and window images, thus
reducing the largest block size over a period of time.

Empty Heap Memory Fragmented Heap Memory
Top of DOS Memory Top of DOS Memory
FreePtr-> 4+--ecemmmmmm e - + e e +
0 e 1-——+
FreePtr-> |- - ————————-—————- 2——|+
Free Space
60k
HeapbPtr-> |- - - - ————
*x 0 e e e
MaxAvail
341k Free Space
* 70k
_________________ 2<— |+
Free Space
*
MaxAvail
102k
*
*
HeapPtr-> |-———=——=—————————— <= HeapOrg----- > |- 1<-+
* Program * * Program *

This chapter will discuss how the normal Turbo Pascal heap manager and the
TEGL heap manager can coexist, and how ReserveHugeMinimum reduces the
fragmentation that occurs.

Turbo Pascal Heap Manager

Programmer's Reference Guide - 248 - TEGL Windows Toolkit

APPENDICES

There are only two main pointers that manages the heap. The HeapPtr
points to the end of the last memory block. FreePtr points to a list
of free memory blocks that can be re-used.

Top of DOS Memory

FreePtr-> |—-——————m— 2—— |+

60k
HeapPtr-> |-——————-—-————————

70k
————————————————— 2<—|+
Free Space
*
MaxAvail
102k
*
————————————————— 1<—+

* Program *

When memory is requested from the Turbo Pascal Heap Manager, a sequential
scan of the Freeptr chain is made to see if any of the free memory

space can be re-used. Any free space that satisfy the requested size will
be used.

The free space is then reduced by the allocation size and removed from the
FreePtr chain if the block is completely allocated.

GETMEM (102k)

Top of DOS Memory Top of DOS Memory
gy + gy +
————————————————— 1-—+ FreePtr-> |- ——————-——-—————— | 2——+
FreePtr-> |- ——————-——-—————- 2——|+
Free Space Free Space
60k 60k
HeapbPtr-> |- - ——————----—-————— Heapbtr-> |- - - ———————-——————
Free Space Free Space
70k 70k

Programmer's Reference Guide - 249 - TEGL Windows Toolkit

APPENDICES

————————————————— 2<— |+ ———————— e | 2< -+
————————————————— [1117077 777777777
Free Space /1177777 777777777
* L1117 777777777
MaxAvail L1117 777777777
102k L1117 777777777
* L1117 777777777
L1777 777777777
_________________ 1<—+ e
* Program * * Program *
GETMEM (20k)
Top of DOS Memory Top of DOS Memory
e + g +
————————————————— 1-——+ ——————————— e [1 -+
FreePtr-> |- 2—-—|+ FreePtr-> |- 2—-—|+
Free Space Free Space
60k 60k
HeapbPtr-> |- - ——————--—--—————— HeapbPtr-> |- - - ——————--——————
R N 1 Free Space
Free Space 50k
1721 < O Bttt 2<—-|+
L1717 777777777
_________________ 2<— |+ e
 Free Space | | | Free Space
MaxAvail MaxAvail
102k 102k
————————————————— 1<-+ ——————————— e | 1<+
* Program * * Program *

When memory is released (freed), the Turbo Pascal Heap Manager
sequentially scans the Freeptr chain to see if any of the free memory
space i1s adjacent to the memory block that is being freed.

FREEMEM (A)
Top of DOS Memory Top of DOS Memory
e + g +
————————————————— 1-—+ —————————————— e | 1 -4
————————————————— 2——|+ ———————e X ——— | 2—— | +
———————— X———— | 3—=| | + ——_———————————— = | 5—--
————————————————— 4-- + FreePtr-> |-———————— [4——
FreePtr-> |- 5-- + *
*

Programmer's Reference Guide - 250 - TEGL Windows Toolkit

HeapPtr->

(A) >>>

If adjacent memory is found, the free space pointer is removed from

+++++++++H+H
+++++++++H+H
++++++++H+H
+++++++++H+H
++++++++H+H
++++++++H+H
++++++++H+H
++++++++H+H
++++++++H+H
++++++++H+H
* Program *

APPENDICES

2<—|+

3<-

5<-|—--

1<-+

4<mme—t

HeapbPtr->

(A) >>>

o e
R o e e

++++++++H+H 4+

++++++++HH

++++++++H+H 4

++++++++H+H A+

++++++++H+ 4

++++++H++HH 4
* Program *

FreePtr chain and Turbo Pascal's heap manager takes the most recent

entry and moves it to fill the now empty position.

original pointer is adjusted to reflect a new pointer position and

size.

FreePtr->

HeapPtr->

(A) >>>

(A)

Top of DOS Memory

++++++++H+H

++++++++H+H

++++++++

++++++++

++++++++

++++++++
* Program ¥*

5<—|—|+

1<-+

4<———t

FreePtr->

HeapbPtr->

The size and the

Top of DOS Memory

s

e o o o R
++++++++H+H 4
++++++H++HH 4
++++++++H+H 4
++++++++H+H A+
++++++++ 4+
++++++++ A+
* Program *

2<—|+

5<-| -

1<-+

A<———t

the

A<- |+

5<—|—|+

1<-+

4<———t

When all possible adjacent blocks have been removed, the Turbo Pascal heap
manager checks if the end of memory block is equal to the HeapPtr.
a free space entry is added to the bottom of FreePtr.

FREEMEM (B)

If not,

Programmer's Reference Guide - 251 - TEGL Windows Toolkit

FreePtr->

HeapPtr->

(B) >>>

Top of DOS Memory

+++++++++H+H

+++++++++H+H

+++++++++H+H

+++++++++H+H

+++++++++H+H

+++++++++H+H
* Program *

APPENDICES

A<L—

5<-

1<-+

4<———t

+

Top of DOS Memory

As you may note that the free space pointer chain is almost on a first in

first out basis.

The most recent freed block is used first.

activities is dependant on localize freeing of memory. A more effecient

method is sorting the free space entries,

space will always be towards the lower part of the heap memory. However

this is not the most effective method.

allocated in the middle of the heap,

parts.

TEGL Heap Manager

The TEGL Heap Manager is slightly different in its management methods.
Allocation of memory is always attempted between HeapPtr and
FreePtr before searching for free space within the FreePtr chain.

GETMEM (20k)

FreePtr->

HeapPtr->

Before

1-—+
2

+

FreePtr->

HeapbPtr->

g +
----------------- 1-—+
----------------- 4| -+

FreePtr-> |- 5-—|-|+

*
*

HeapbPtr-> |- - - ——————--——————
++++++++H+H A+
+++++++++ 4 | 5<= [= |+
++++++++ 4+
++++++H+HHH A+ | 1<
++++++++ 4
++++++++H+H 4 | A<———+

* Program *
Thus heap
so that attempts to allocate

If a single non-movable record is

this will fragment the heap into two

Getmem TEGLGetMem

o o +

——————— 1-—+ —— | 1l-—+
——————— 2--|+ FreePtr-> |-—————-|2--

* 40k

60k | || |

* 1171777
——————— HeapPtr-> |-—-———-—-

Programmer's Reference Guide - 252 - TEGL Windows Toolkit

APPENDICES
—————— ___; __________
* 50k *
0« 1 e 2<—- 70k
* 1171777 *
——————— 2<— —_—————— —_—————— | 2<-
* * *
102k 102k 102k
* * *
——————— 1<—+ ——————— 1<+ ——————— | 1<+
Program Program Program

When memory is released (freed), the TEGL Pascal Heap Manager is similar
to Turbo Pascal Heap Manager in that adjacent memory block are combined by
scanning through the Freeptr chain. However the difference that is
noticeble immediately, is the sorted order of the free space pointers in
comparison to the FIFO structure of TP's.

FREEMEM (A)

Top of DOS Memory Top of DOS Memory

————————————————— 1--+ ———————— e —— | 1+
———————— X————— | 2—= |+ —————————— e —— | 3= | =+
————————————————— 3—-] |+ e e et I I I
————————————————— 4-- + FreePtr-> |- -————-—-—-———————— | 5——| -
FreePtr-> |-——----—--oo-———- 5-- + *
*
* *

HeapbPtr-> |- - —————--—--—————— Heapbtr-> |- - - - ————
+++++++++H+H ++++++++H+H A+
+++++++++H 4+ | 1<+ +H+++++H+ A | 1<+

(A) >>> | +++++++++++++++++
+++++++H+t A+ | 2<——+ (A)>>> | mmm e
++++++++H+H ++++++++H+H 4+
+++++++++++++++++ | 3<———+ +++++++++++H 4 | 3<-——+
++++++++H+H ++++++++ 4+
++++++++t 4 | A<o———4 +H+++++tttt A+ | 4A<o———+
++++++++H+H ++++++++ 4+
+++++++++++++++4+ | 5<—mm == + +++++++++++++++++ | <o ———=
* Program * * Program *

If adjacent memory is found, the free space pointer is removed from the

FreePtr chain and TEGL's heap manager moves the free chain structure
up by one entry to close the empty position.

The size and the original

Programmer's Reference Guide - 253 - TEGL Windows Toolkit

APPENDICES

pointer (A) is adjusted to reflect a new pointer position and size.

Top of DOS Memory Top of DOS Memory
e + g +
----------------- 3————+ ————e e | A+
————————————————— 4o | + —————— | 3= | -4
FreePtr-> |- S5-—— ||+ e d——| = |+
* FreePtr-> |- S5-—1-| |+
* *
HeapbPtr-> |- - ——————----—————— Heapbtr-> |- - - ——————--——————
————————————————— +4+++++++H+H 4+
(A)>>> | ———mmmm e +H+++++++++++++++ | A<+
++++++++H+H ++++++++ A+
+++++++++H++++++++ | 3<———+ +++++++++++H 4 | 3<-——+
++++++++H+H ++++++++ 4+
++++++++t 4t | A<————4 +H+++++tttt A+ | 4A<o———+
++++++++H+H ++++++++ 4+
+++++++++++++++4+ | 5<—mm == + +++++++++++++++++ | <o ———= +
* Program * * Program *

When all possible adjacent blocks have been removed, the TEGL heap manager
checks if the end of memory block is equal to the HeapPtr. If not, a free
space entry is added to the bottom of FreePtr.

FREEMEM (B)
Top of DOS Memory Top of DOS Memory
e + g +
----------------- A-——+ | 3=+
————————————————— 3——| -+ ————————— e 4 | +
————————————————— d——| = |+ FreePtr-> |--——————————————— | b———— | | +
FreePtr-> |——-—————- X——mm————— S5-I+ *
*
*
HeapbPtr-> |- - —————----——————
(B)>>> | = mmm e -
*
————————————————— A<-+ HeapbPtr-> |- - - ————
++++++++H+H ++++++++H+H 4+
+++++++++++++++++ | 3<———+ +++++++++++H 4 | 3<-——+

Programmer's Reference Guide - 254 - TEGL Windows Toolkit

APPENDICES

e e o

FHtt+ttttt bttt | 4<————+ e+ttt | 4<————+
e o e
+H++++t+++tt++++ | 5<-———— - +H++++tt++tt+++++ | 5<-———— +

* Program ¥* * Program *

TEGL uses the more efficient method of maintaining the free space chain in
sorted out. This allows allocation of memory to favor the lower portion of
the heap. However, as mentioned before, this does not remove the
fragmentation problem where one non-movable records is allocated in the
middle of the heap.

Combining the best of both Heap Managers (Coexisting)

What we noted that we needed was the ability to have two heaps. One for
miscellaneous dyanamic variables and one for large allocations for images.
Combined with the virtual memory handler, this allows the paging out the
large allocations effectively releasing adjacent memory. At the same time
we did not want to limit either heap. The turbo heap must have the ability
to flow over to the second heap without problems.

ReserveHugeMinimum provides an elegant solution of partitioning the
standard heap into two parts. A single non-movable byte is allocated as a
partitioner.

GetMem TEGLGetMem
_____________________ +
FreePtr-> |-—-———--—- l--+ FreePtr-> |-———-—-—- l1--+ FreePtr-> |-————-—- 1--+
329k 329k 200k
HeapPtr-> |-—-————-
11771777
1177777
HugeMin HugeMin /177177
HeapPtr-> |-——-———- HeapbPtr-> |————-—-(| | ===
12k 11k 11k
——————— 1<—+ ——————— | 1<+
1171777 1171777
——————— 1<—+ —_—————— —_——————
Program Program Program

Since Turbo Heap Manager will always search for free space through the

FreePtr Chain,

the lower partitioned area will always be used first

(it

Programmer's Reference Guide - 255 - TEGL Windows Toolkit

APPENDICES

is always the first few entries in the FreePtr chain). (Remember,
when Turbo Pascal frees a memory block, the free space pointer will be the
most recent entry.)

The TEGL heap manager will always attempt to allocate space between
HeapPtr and FreePtr before searching through the free space pointer
chain. Even when searching through the free space chain, a comparison is
made on the minimum area for allocating. When TEGL frees a memory block,
the free space pointer is sorted upwards into the free space chain.

Top of DOS Memory

Fom - -
ey
+] =Bl -
+]|--Cl-mmmmmm e -
+]||--D|-=—mmmm e ———

+ ——E|-mm e
----------------- 4-—+
----------------- 1-—|+
----------------- 3| |+
----------------- 2—— || |+
----------------- 5-— +

+->A | +++++ttt+Htt 4
+——>B | +++++++++++++++++

+=——=>C | +++++++++++++++++
+=——==>D | +++++++++++++++++
S ——— SE | +++++++++++++++++
Hugemin
+H++++++HHH A+ | 2<- |+
+++++++++H++H++++ | 3<- | -+
+++++++++++H+++++ | 5<- | = | +
++++++++H+H 4+ | A<+
+++++++++ 4 | 2<————4
* Program *

Programmer's Reference Guide - 256 - TEGL Windows Toolkit

Variables, Types and Const

Appendix C - Vars, Types & Const

ActivePage Word Typed Const FASTGRPH

Set to the memory address (segment) of the active video page.

See also FlipAPage, FlipVPage, SetAPage, SetVPage.

CallProc Procedure Type TEGLUNIT

This is the standard declaration for and event. All procedures and
functions that set events specify this in their parameter list.

See also (it NilUnitProc.

FG* Const FASTGRPH

These constants are used as an arguments to PutBiti and can be assigned
to RmwBits. Determines what kind of binary operation to use. They are:
FGNorm - Normal or Copy put, FGAnd - AND put, FGOr - OR put,

FBXor - XOR put, FGNot - not put.

See also FastLine.

Jagged Word Typed Const FASTGRPH

This const affects all output by OutTEGLTextXY and TEGLWrtChar. When
set to 0 no action is taken, when set to 1, text is output with alternate
rows of pixels shifted by one.

Programmer's Reference Guide - 257 - TEGL Windows Toolkit

Variables, Types and Const

MSClick Boolean Const TEGLUNIT

Set to False. Used as an argument to mouse related procedures where mouse
activation is desired by location over the mouse click area and pressing
the left button.

See also DefineMouseClickArea, ResetMSClickSense.

MSSense Boolean Const TEGLUNIT

Set to True. Used as an argument to mouse related procedures where mouse
activation is desired by simply passing over a mouse click area.

See also DefineMouseClickArea, ResetMSClickSense.

RmwBits Word Typed Const FASTGRPH

Set to the desired binary operation for subsequent PutPixs.

See also FG*.

The file switches.inc contains conditions compilation directives that
support different facilities with the Toolkit.

Note that if you change any defines you will have to make the entire
toolkit.

The following defines affect the Toolkit:

{SDEFINE AllFonts} - The toolkit is built referencing the unit {it TeglFont}
for getting the address of a font. If this symbol is not defined then the
fonts are referenced in seperate units. Having the fonts in individual units
has the advantage of saving some memory space during linking (assuming they
are not all used). If you are using the integrated environment then commonly
used fonts can be loaded directly into turbo.tpl for faster compiles.

Font units file names are of the form fon*.pas.

{SDEFINE NoGr} - The toolkit is built with no explicit references to the
Graph unit provided with Turbo Pascal. Instead a compatible unit

Programmer's Reference Guide - 258 - TEGL Windows Toolkit

Conditional Compilation

TGraph is uses which provides a subset of the functions provided in

Graph. If your application does not need all the features of the Graph
unit then compiling with this directive enabled can save as much as 25K of
code size in a program (assuming the BGI drivers are linked in).

{SDEFINE NoVirt} - The code that implements virtual memory using either
EMS or a disk drive is not included. Applications save about 8K of code
space but can easily run out of memory if many windows are opened. This
is more critical for EGA or VGA displays since the windows require four
times as much memory than CGA or Hurcules displays.

{SDEFINE Quick} - The tookit will be built using the {it MSGraph} unit
provided with Quick Pascal. TGraph is used to map calls to the
appropriate routines in MSGraph.

These defines determine what graphics boards will be supported. The
assembly language code that implements the drivers for each board takes
about 3K of space in the final application. You cannot define all of these.

{SDEFINE NoCGA} - The code for the color graphics adaptor is not linked.

{SDEFINE NOEVGA} - The code for the enhanced graphics adaptor and the
video graphics array is not linked in.

{SDEFINE NoHerc} - The code for the hercules graphics adaptor is not
linked in.

Programmer's Reference Guide - 259 - TEGL Windows Toolkit

Programmer's Reference Guide - 260 - TEGL Windows Toolkit

ADOrt PrOCEAULE . ittt ittt ettt ettt et et et asesasesesenesasasans 140
ACtiveBULLON ProCedUTrE. v v i vttt ittt neeeeeeeeeeeeseeseenneas 29
ActivePage Word Typed ConsSt...iie it ententeeeeeeeeeeeeeennens 257
AddCaptureKey ProOCeaUL e . v v vt ittt ittt et et etesesesesesasasans 122
AddFrame Procedure Method....... .. ittt teieeeeanans 178
AllocateExpandedMemoryPages function..........eeiiieeen... 200
Animate Procedure Method.ttt ittt inteeeeeeeeenens 180
AnimateInit Procedure Method....... .ttt inteeeeeennns 179
AskSoundSense Event i ittt ittt tetetetenenenasanans 192
Bar ProOCEAUTL . i i it ittt ittt ottt oo sesesesesssssessssssanesess 232
L2 o i (Y o 87
Beep PrOCEAUTE . &t ittt ittt ettt ettt e sesesesssssessssssanesess 193
BigImageSize FUNCLIOM .t vttt ittt ittt iteeeeeeeeeeeeeeseennas 134
CGAGA0X200X2 PrOCEAUL . c v it vttt eeeeeeeeeeeeeeoeneessenenens 128
CallProC ProCedUre Ty .« e e et eeeeeeeeeeeeeeoeneesnsnenens 257
CheckCtrlBreak ProCeduUre. ... it ittt eeeeeeeeeeeeeeeenenens 228
CheckCtrlBreakFES ProCedUre. .« i i i ettt eeeeeeeeeeeeeeeenenens 228
CheckForMouseSelect FUNCLION. . ittt ittt ittt eneeeeeaean 165
CheckMouseClickPoOs FUNCLION. ¢t ittt ittt ittt et eeeeeeenas 164
ClearButtonInfo Procedure. ... ittt it ittt eeeeeeeeeeeenenens 113
ClearKeyBoardBuf ProCeduUre. ...t it et eeeeeeeeeeeeeenenens 83
ClearTEGLKeyBoardBuf ProceduUre. iteeeeeeeeeeeeeenens 83
ClearTEGLScCreen ProCedUre. .. i i ittt ettt eeeeeeeeeeeeeenenens 142
Click and drag. .o e e et eeteeeeeeeeeeeeeeeeeoeeoesoeeseeeneenas 23
CloseGraph Procedure. . v i ittt ittt eeeeeeeeeeeeeeeeenenens 232
CloseVirtual ProCEAUL . v v vttt ittt eeeeeeeeeeeoeeeeseeeeenas 219
ColToX FUNCEION .ttt et et et ettt ettt eeeeeeeeeeseeseeneenas 30
CollapseToIconShow Event.ttt ittt it ittt eeeeeneeeenens 156
CollapseToMsClick Event ..o et i ittt teeeeeeeeeeeeeeeeanas 156
CommitUpdate ProCEdUL . . vvi ittt eeeeeeeeeeeeeeeeseeeeenas 54
Complete Procedure Method...... .ottt ittt eeeeeenans 180
CountFrames FUNCLion. .o it ittt ittt ittt teeeeeeeeseeeeanas 45
CreateBarMenu ProCedUre. .. v i it ittt eeeeeeeeeeeeoeeeeenenens 98
CreateImageBuffer Procedure. ... c.i i ittt itieeeeeeeeeeenenens 63
CreateOptionMenu FUNCLI0N. . it ittt ittt et eeteeeeeeeeeeenas 89
CreateShadowOM FUNCELION . .t vttt ittt ittt et eeteeeeeseeeeenas 91
CurrentFrameNumber Function Method...........ciiiiiieeeennn. 179
CursorShape ProCedUre. .. ittt ii ittt eeeeeeeeeeeeeeeseenenens 109
DeallocateExpandedMemoryPages function..........c.ceeeeeenn.. 202
DefineButtonClick Procedure.ottt ententeneeeeeennns 154
DefineGlobalKeyClickArea Procedure.o u et enteeeeeeeeenns 83
DefinelocalKeyClickArea ProCeduUre. tenteneeneeeenns 84
DefinelLongButtonClick Procedure.t entienteeeeeeeennns 154
DefineMouseClickArea ProCedUre. .. .v.u .t etee e teneeeeeennns 73
DefineMousSeCliCK AT Ea . v vttt ittt et teeeeeeeeeeeneeeeseeseennns 258
DefineOptionClickArea Procedure. ... it eetenteneeeeeeenns 102
Definelptions ProCedUrE. « v i vt et eeeeeeeeeeeeeeoeeseeseenens 90
DefineResizeClickArea Procedure.t ententeneeeeeennns 223
DefineResizeMinMax ProCedure. i ittt eeeeneeeeeeeeennns 224
DefineSliderArea ProCedUrE. « v vt e e eeeeeeeeoeeeeseeseennns 224
DefineUserButtonClick Procedure.t intenteeeeeeeennns 155

DeleteCaptureKey ProCeaULE. v vttt vttt e teseeneesesesseneeens 123

Programmer's Reference Guide - 261 - TEGL Windows Toolkit

Destination Function Method......... . iinnennn. 175
DetectGraph ProCeduUre. . v v i ittt ittt ittt tneneeseseseeneeens 233
DrawLongButton ProCedUre. .. v vttt ittt te e eneeseseseeneeens 160
DropImageBuffer ProCeduUre. ... v v i it tn e teeneesesesneneeens 64
DropKeyClicK ProCedUre. . vu i it itteeeeeeeeeeeeeeoeeseeseennns 85
DropSliders ProOCEAUL . v v vi i it t et eeeeeeeeeeeeoesoesseeseenens 225
DropStackImage ProCeAULE. & vt v i ittt e teeesesneesesessenesess 49
DropTimerCount ProCEedUL . . vvu it ittt eeeeeeeeeeeoeeseeseenens 120
DropTimerTick ProCedUrE. @ v v vt et teeeeeeeeeeeoeeoeesoeeseennns 229
B G . it ittt e e e e e e e e e e e e e et 135
EGAG40xX350X16 ProCedUrE. @ v v vttt tit it eneeneenennenneneenns 128
EMSBloCkRead PrOCEAULE . v v vttt ittt ettt et e sosssesesessanesess 209
EMSBlockWrite pProCedUre. @ v i et it ittt eeeeeeeeeeeeeeeeseennns 209
EMSClOSE PrOCEAULE .. v v vt vt vt e oo oo ososesesssssssssssssnsesess 210
EMSOpen fUNCLION. ittt ittt et ettt ettt eeeeeoeseeeeeeeennns 207
EMSPagesAvailable function........oiiiiiii i iinteeeeeeeeenns 200
EMSSeek ProCEdUTr . i v ittt ittt ittt ettt st sesssesesessenesens 208
EasSYTEGL PrOCEAULE . vt vttt vttt e oo oo sesesessssssssssssanesess 33
EditString ProcedUre. @ v i it in it eeeeeeeeeeeeeeeeseeseennns 191
EmmInstalled function.......o. ittt tttnnennenenn 199
ErrMess ProCedUre. ...t ii ittt ittt eeeeeeneenennenneeeenns 30
Event driven Code.ttt ittt ittt ettt eneenens 22
Y 105
Expand and shrink.ottt ittt eeeeeeeeeeeeeeenns 23
ExplodeFromIconHide. . .o vttt ittt ittt it ettt teeeeeeeeeeennns 157
ExplodeFromMsClick ProCedure. . v et ittt ieeeeeneeeeoeeeeennns 157
ExtendTextXY ProCedUre. ... vttt iitiiteneeneenennenneeeenns 153
EXtractIMG ProCedUre. @i vt ittt it ittt it teeeeeenennenneneenns 137
Extractpixs FUNCLion. . v et ittt ittt ittt ittt eeteeeeeeeennns 137
N T) o = 257
N o L 66
N o L 257
31 s 4 257
3 e o 66
A 66
A 257
L 66
N 257
<G s 66
<G s 257
FastLine ProCedUre. .. v it ittt ittt ettt eneeeeneeneneenens 131
FindFrame FUuncChLion.ttt ittt ittt ettt eaeenens 162
FindKeyClicKPtr FUNCLION. .t ittt ittt it ittt eeteeeeeeeennns 85
FindMouseClickPtr Function.......o.o ittt itiineeenenen. 75
FindSliderFS FunCtion. @ v it ittt ittt et et ettt eeeeens 225
FitFrame ProCedUre. .. v it ittt it ittt nee e eneeseneneeneenens 31
FlipAPage ProCedUr e . . u i in it teeeeeeeeeeeeeeneeoeeseeseennas 135
FlipVPage ProCedUrE. . u i in i ieteeeeeeeeeeeeeeoeeoeesoeeseennas 136
FontName FUunCtion. ... ittt ittt ettt ettt e eeenens 187
N @ 0 = T 187
FrameExist FUNCLION. .« ittt ittt ittt et ettt eeeeeens 45

FrameFromIcon ProCedUTl . .« v v i i i it ittt ettt eeeeeeeeeeeennnnnns 31

Programmer's Reference Guide - 262 - TEGL Windows Toolkit

FrameSelectAndMove FUNCLION . v ittt ittt ittt ittt ettt eeenennns 55
FrameTeXt ProCedUr . @i it ittt ittt et ittt e teeeeeeeeeeeeeenas 32
FreeImageBuffer ProCeduUre. ... v ittt tn e eneneesesesneneeens 67
FreeVirtual pProCedUre. .. it ie ittt ittt eeeeeeeeeeeeeseennns 218
FreezeMoUuse fUNCELION. i i i ittt ittt ittt i ettt ettt ettt eeeneenns 114
FrozZenMoUSe PrOCEAUL . @i ittt it ittt e teeeeeeeeneeeeeeneeeeeenas 114
GetBKCOL1Or FUNCE IO . t v it it i i et ettt et e ettt ettt eeeeeeeeeneas 233
GetBULttonPressInfo ProCeduUre. @ v v e i ittt ittt et tieeeeeeenas 112
GetButtonReleaseInfo ProCedUre. v i ittt ittt e teeeneeeeenns 112
GetCOlor FUNCE IO . it i it ittt ettt ettt eeeeeeeeeeeeeeeeneeneas 233
GetFSImage FUNCL IO . vt ittt ittt et ettt e eeeeeeeeeseeeeenas 65
GetFilllPattern ProOCEAUTL . v v v it ittt ittt eeeeeeeeeeeeeeneeneas 234
GetFrontImage FuUNCLIOoN. .t it ittt ittt ittt teeteeeeeseeeeenas 68
GetGraphMode FUunCLion. ... vi ittt ittt ittt teeteeeeeeeeeeanas 234
GetHandleCountUsed fUNCLIiON. .t i ittt ittt ittt et eeeeeenens 203
GetKBSteps ProCedUre. i v it ittt ittt eeeeeeeeeeeeeeeeosoenenens 118
GetMaxX FUNCE IO . it it i it ittt ettt ettt ettt eeeeeeeeeeeeneeneas 235
GetMaxY FUNCE IO . i i it i it ittt et ettt et ettt eeeeeeeeeeeeaeeneas 235
GetMouseSensitivity Procedure.ottt ittt inteeeeeeeennn 116
GetMousey FUNCELion. c vttt ittt ittt ettt ittt eeteeseeoaanas 32
GetOrigin Procedure Method.ttt teeeeeeeenns 175
GetPageFrameBaseAddress function........c.oiii i eeeeennn 201
GetPagesOwnedByHandle function.......c.ieiiintinteneeeeeeenn 203
GetPartialFrontImage FUNCLioNn. ...t ittt ittt eeeeeeeeenn 67
GetTextSettings ProCedUre. .. ittt ittt teeteeeeeeeeeeanas 235
GetVersionNumber fUNCLIoN. . vttt ittt ittt ettt et et eeenens 202
GeLYEesSNO FUNCE IOt it i it it ettt ettt ettt e eeeeeeeeeeeeneeneas 33
Getbhitl ProCedUre . v v ittt ittt ittt ettt et eeeeeeeeeeeeneeneas 133
GetpPixs FUNCLIOM . v ittt it et ettt ettt eeeeeeesoeeoeeseeeeenas 132
GraphResUlt FUNCLIi0N. . vt ittt ittt it ittt ettt eeseeseeeeenas 236
Herc720x200X2 ProOCEAUT . i v it it ittt ittt e teeeeeeeeeneeeeenas 128
HideImage ProOCEdUTL . v i v vt it ittt eeeeeeeeeeeeeeoeeseeseeeeenas 50
HideMousSe ProOCeAU B . i v ittt ittt eeeeeeeeeeeeeeeeeeeeeeneeneas 108
ImageSize Function \ TGraph.......iie ittt tieneeennnnn. 236
InitGraph ProCedUre. . vt ii ittt ittt teeeeeeeeeeeoeeeeeoeennns 236
Jagged Word Typed Const ...t i it ittt eteteeesenenenanans 257
=T e £ 90
Key StaCKk P r . i ittt ittt et e ettt et et ettt 85
Keyboard events. ...ttt ittt it ittt ittt seseseanenens 24
LastCol FUNCE IO . ittt i it ittt ettt ettt ettt eeeeeeeeeeeeaeenens 34
LasStROW FUNCE IO . t i it i it it ittt ettt et ettt et eeeeeeeeeaeeneas 34
Line ProCeAUr B . @i ittt i ittt ittt teteeeeeeeeeeeeeeeeeeeneeneas 237
LInKE S ProOCEAUTE . i i ittt i ittt ettt eeeeeeeeeeeeeeeeeeneeneas 61l
LinKUNAEerE S PrOCEAUTL . vt vt ittt ettt ittt eeeeeeeeeeeeeeeneeneas 62
LockImage ProCedUT e . .« .ci it it it eeeeeeeeeeeeeeeeoeeeessenenens 69
MCUTrSOrOff ProCedUr e . @i i ittt ittt et ittt ettt eeeeeeneeeeeneeen 106
MCUTrSOYON PrOCEAULE . @ i it it ettt ettt et e e eeeeeeeeeeneeeeeneeen 107
MSClick BoOlean CoONSE vt v it ittt ittt eeeeeeeeeeeeeeeneens 258
MSSense Boolean ConSt . v i i it ittt et tteeeeeeeeeeeeeeeeeeneeen 258
M S N S e v v i et ettt et ettt eeeeeeeeeeeeeeeeeeeeeeeeeeeteeeeeeen 23
MO et POS PrOCEAUT .t i v i i ittt ettt ettt et eeeeeeeeeeeeeeeeeeeeeen 107

Programmer's Reference Guide - 263 - TEGL Windows Toolkit

8 I <Y 116
MousePosition function.......i ittt teeteeeeeeeennens 111
MOVEBOX PrOCEAULE . vt ittt ittt ettt et et et asesesesesesesasasans 158
MoOVeFrame ProOCEAULE . & v vt vttt ittt et e tesesesesesesesesasasans 60
MoveFromVirtual ProCEeAUL . v vt vttt neeneeeeeeeoeeseeseenneas 217
MoveStackImage ProCeduUr . . .v . v it ittt it et etesesesesesasanans 59
MoveToVirtual function.......ii ittt teeteeeeeeeeeeennens 218
£ O30 <P 23
LSS T D o T 73
< O <R 73
NilKeyCallProC FUNCELION. ¢t ittt ittt et ettt eesenseeeeennns 124
NilUNitProC Event ...ttt ittt et eeteeeeeeeeeeeseeoeennns 229
OF i it ittt e e et e e et e e e e e e e e e e e e e e 89
O e it e e e et e e e e e e e e e e e e e ettt e 88
(@] o) wii I o N Y ol 89
(@] o) w3 o N 11T o N 88
Origin Procedure Method. ...ttt ittt eeeieeeeneeeeeennns 174
OULBarOpPtion ProCedUre. v it it ittt et eeeeeeeeeeeeeeeeeoeennns 98
OutFrameTeXtXY ProCeAULE . & vt vttt e et eeesesssesesesseneeens 34
OULTEGLTEXLXY PrOCEAUTL . ¢ vt vttt vttt e oo sesesssesesessaneeess 184
OUEL TE GL T et XY & i it it i e et i e ettt et ettt e et esenseeeenseeenas 187
OUEL TE GL T et XY & i it it i e et i e ettt et ettt e et esenseeeenseeenas 257
OULTEXLXY PrOCEAUTL . v vt v ittt ittt oot ot asesesssessssssenesess 237
OverLapArea FUNCLion. . v et ittt ittt it it e teeeeeeeeeeenans 230
OverlayIMG ProOCEAULE . v vt vttt vt vt e teeesesesssssesesessenesess 138
PagelnE S ProOCEAULE . vt vttt ittt et e tesesesesessssssssssanesess 68
PageOULES PrOCEAUTL . ¢ vt v ittt ittt oo oo sosesssssesssessanesess 70
PageOutImageStack Function.ottt ienteneeeeeennns 71
PicCtSizZe ProCEdUI . v i ii ittt it eeeeeeeeeeeaeenesoeesoeeseennas 140
PopImage PrOCEAULE . vt v ittt ittt oo oo sesesesssssesssessanesess 47
PrepareForPartialUpdate Procedure......c.ou it enteneeeeeeenns 52
PrepareForUpdate FUNCLion. . v e it ittt ittt eeteeeeneeeeeennns 53
PressBULLON ProCedUr . v v ittt ittt ittt e e tnoseeseseseenesess 167
| et} T B ulle e o ¥ 186
PUShImage ProOCEAUTL . . vt v i ittt ittt e oo sosesesssesesesseneeess 46
PULFSIMage ProOCEAULE . & v ittt ittt oo oo sosesesssesesessenesess 66
PutUserButtonClick Procedure. ... ittt enteneeneeeeeeenns 155
PUtbhitl ProceduUre. ...t ii ittt ittt eeeeeeeeeeeeeeeeeeennns 133
PULPICE ProCedUre. @i i it ittt it ettt eeeeeeoeeoeeeoeeseeseennas 41
PULPICE ProCedUre. @i i it ittt it ettt eeeeeeoeeoeeeoeeseeseennas 139
PULPIXS ProCedUrE. @i ittt ittt et eeeeeeeeaeeoesoeeseeseenens 132
QuUickFrame ProCedUIr B . .« v i et eeeeeeeeeeeeeeaeeoesoesseeseennns 35
QUIL EVeNt i ittt ittt ettt ettt teeeeeeeeaeeoeeseeseeneennas 35
LY=o 1 84
Rectangle ProCedUre. . v . v i it ittt tnteeeeeeeensesesessenesens 238
ReplaceOptionText ProCedUre. ...ttt et eeeeneeeeeeeeennns 94
ReserveHugeMinimum pProCeduUre. v ittt ittt eeeeeeeeeeeeeennns 221
ResetFrame Procedure Method......... ittt inenennns 176
ResetKeyClickCallProC Procedure. ..t eiteeteneeeeeeeeennns 85
ResetMSClickActive Procedure. ... it ittt it eeteeeeeeeeeeennns 77
ResetMSClickCallProC ProCedUre. . v vt i it et eeeeeeeeeeeeeennns 79

ResetMSClickSense ProCedUr . @i v e i e ettt eeeeeneeeeeneeeenns 81

Programmer's Reference Guide - 264 - TEGL Windows Toolkit

ResetMSCliCKSENSE . i ittt ettt ettt e eeeeeeeeaeeoneeoeeseeneennas 258
ResetMouseClicKksS ProCedUrE. v vt vt i it teeeeeeeeoeeeeeeeseennns 80
ResetOptionMenuEvents Procedure.o itintienteneeeeeeenns 103
ResetSequence Procedure Method....... ..ttt ininennns 177
ResetTimerFlag ProCedUr . v v v et vt i it eeeeeeeeeeeeeseeeeennns 120
ResizeFrame ProCedUr . . v vt ee et eeeeeeeeeeeeoeeoeeseeseennns 226
ResizeOptionMenu ProCedUrE. v v v vt et eeeeeeeeeeeeeeeeseenens 92
RestoreCrtMode Procedure \ TGraph........o.oeeeeeeieeennnnnn. 238
RestoreFont ProCedUr . v vt ittt ittt e teeeseeseesesessenesens 36
RmwBits Word Typed ConSt . i et it ittt tteeeeeeeeeeeeeeseennns 258
RotateStackImage ProCedUrE. .. v vt ittt e e eneneesesesseneeens 47
RotateUnderStackImage ProCedUre. ... v vt i tn e eneeeesneneneens 48
ROWTOY FUNCEL IO . it it ittt et et ettt eeeeeeeesoeseeseeneeneas 36
SVGABOORE00K LB . v vttt ittt e et et e e e et ettt ettt 129
SelectAndMoveFrame Eventttt it tetetetenenasanans 226
SelectEasyFont ProCedure. ... v ittt ittt iteteteeesesesasasans 37
SelectaFile fUNCLIOoN. .t it ittt ittt ittt ettt eeseeeeennens 189
Sequence Procedure Method....... .. ittt ieteeenans 177
SetAPage ProCedUr . . v v it ittt ittt et et esesesesesesesasanans 134
SetAULOROLALE ProCedUre. v v vt ittt ittt ettt et et et esenesanasans 56
SetBarBorderColor ProCeaULe . v v vt ittt ittt etetesesesesasasans 100
SetBarBorderOff ProCedUre. . v v ittt ittt it eteteeesenenasanans 100
SetBarFillStyle ProCedUTr . v vt eeeeeeeeeeeeeseesoeeseennens 101
SetBarMenuColor ProCedUre. v v vt it ittt ittt etesesesenesasasans 99
SetBarMenuMargin ProCedUre. .. it ittt enteeeeeeeeeeennens 102
SetBarShadowtext Procedure. c it itititeteeeeesenasenans 101
SetBarTextColor ProCedUre. & v vt it ittt ittt etesesesenesasanans 99
SetBKkCOlOor ProCedUr . v v i v i ittt ittt et et et esesesesenesasesans 238
SetCOlor ProCedUr . i v i it ittt ittt et et et asesesesesesesasasans 239
SetEasyFont ProCedUre. @i v ittt ittt ettt etesesesenenanasans 37
SetFillPattern ProCeduUre. . v i ittt eneeneeeeeeeeeseennens 239
SetFillStyle ProCedUr . @ v ittt eeeeeeeeeeeeeseeseeseennens 239
SetFrameMobility ProCedUre. ...t it intenteneeeeeeeeennens 57
SetHideSubMenu ProCedUre. v ittt enteeeeneeeeeeeeeseennens 97
SetImageCoordinates ProCedUre. ... it ententeneeeeeeeeennens 70
SetKBSteps ProCedUr . v i vt it ittt ittt et e tetesenesenesasanans 117
SetKeyBoardMouse ProCedUr . . .c . v it it it etetesesesesesasasans 117
SetMouseColor ProCEAULE . v v vt ittt ittt et et et esesesesesasasans 111
SetMouseHotSpot ProcCeduUre. . v v ittt ittt ittt et e tetenenasasans 110
SetMouseMinMax ProCedUre. v ittt e eneeeeeeeeeeeeseeseennens 113
SetMousePosition ProCcedure. ...t ittt et teeteeeeeeeennens 108
SetMouseSense PrOCEAULE . v v vt ittt ittt et etesesesesesesasasans 192
SetMouseSensitivity Procedure. ...t ittt i e teneeneeeenens 116
SetMoveFrameCallProC ProCeduUr . . v . vt ittt et et enesenesasanans 58
SetMoveRestrictions Procedure. ...ttt it tenteneeeeeeenens 57
SetOptionMenuBorderColor ProCedUre. . v vt e e e teneeneeeennns 96
SetOptionMenuColors ProCedUre. .« v v it ententeeeeeeeeseennens 96
SetProportional ProCedUrE. ... it eneeeeeeeeeseeseennens 186
SetShadowBorderColor ProCedUr . . v v vt it it et eteeesesesasasans 148
SetShadowColor ProCedUr . v v v it ittt it etesesesesesesasasans 147
SetShadowFillPattern Procedure.t itenteneeneeeeeennens 148

SetShadowFillStyle ProCedUrE. @ vt eeeeeeeeneeeseeenens 149

Programmer's Reference Guide - 265 - TEGL Windows Toolkit

INDEX

SetShadowTextHighlight Procedure.........ciiii it eeennnn 152
SetShadowText ShadoWw ProCedUr e . @i i ittt it ittt ettt et eeeeneenn 151
SetShadowTexXtType ProCedUre. & v v it it ittt et etenesenesasasans 150
SetShiftKeysS ProCedUrE . v v vt ittt neeeeeeeeeeeeseesoeeseennens 125
SetS1idePoSition ProOCEAUTL . v v i ittt ittt ettt eeeeeeeeeneens 2277
Set TEGLBACKCOl0Or PrOCeAUTL e . i i i it it ittt ettt et eeeeeeeennaean 143
Set TEGLBOrderColor ProOCEAUT . v v i i ittt ittt ettt eeeeeeeeenaeen 144
Set TEGLBOrderShow ProCedUr e . v v v i it ittt ittt e ettt eeeeenaeen 143
SetTEGLEillPattern ProCedUr e . v v v i e ittt et eeeeeeeeeeeeenenens 145
SetTEGLF111Style ProCedUre. i i it eiteneeneeeeeeeeeseennens 145
Set TEGLEONE ProOCeAUT . v i i i it ittt et ettt ettt e e teeeeeeeeeeaeen 186
SetTextJustify Procedure. ...ttt ittt enteeeeeeeeeeennens 240
SetTimerStart ProOCEAUTL . v i it i ittt ittt ettt eeeeeeeeeeeeneens 119
SetTimerTicCK ProCedUr e . v v i ittt ittt ettt eeeeeeeeeeeeneens 230
SetVPage ProCedUr . . v v vt it i ittt tetetesesesesesesesesasasans 135
TSN sV e 1Yo Y0 o ¥ T 1o = 129
ShadoWBOX ProOCEAUL . @ i ittt it ittt ettt e e eeeeneeeeeeeeeeeeeeeen 146
ShadowBOXTEXt ProOCEAUL . v v i i ittt et ittt ettt e teeeneeeeeeneeen 147
ShadowTextHighlightOFF Procedure......c.oiee e teneeneeeennns 152
ShadowteXt ProCeAUTrE. @i i it i ittt it ittt ettt e eeeeeeeeenaeeen 150
ShiftTexXtXY ProOCEAUL . i v ittt ittt ittt ettt eeeeeeeeeeeeeeneens 153
ShowBULtONStatUS EVeN . v i it ittt it it et ettt et ettt teeenaeen 125
ShowCoordinates Event . .v. ittt ittt eeeeeeeeeeeeeeeneens 52
ShOWEONE S EVEeNE i i i it it ittt i et et et ettt ettt e teeeeeeeenaaeen 188
ShowImage ProOCeAULE . & v vt it ittt ittt et et esesesesesesesasasass 51
ShOWMOUSE PrOCEAUL . @ it i ittt ittt ettt e e eeeeseeeeeeeeeeeneeen 108
ShowONEF ONt Event @ v i ittt i ittt e ettt ettt ettt eeeeeeeeenaeen 188
SlideBeep PrOCEAUTL . v vt vt et eeeeeeeeeeeeneeoeesoessoeeseenneas 193
SOUNASWIECh ProOCEAUL . i v it it ittt ittt et ettt teeeeeeeeeeeneens 194
SWaAPBYLES PrOCeAULE . & vt ittt ittt ittt et et et et et esesesesanesans 138
SWapTEGLINtrOff ProcCeduUre. . v v it it ittt ittt etenesenenanasans 105
SWapTEGLINEIrONn ProCedUr . . v v v ittt it etesesesesesesasasans 106
SwapTimerIn ProCedUre. v it ittt it eeeeeeeeeeeseeseeseennens 119
SWapPTimerOUt ProOCedUTL . v vt vttt et eeeeeeeeeeeeeseeseeseennens 119
TEGLCharHeight FuUnCtion. e ittt ittt teeteeeeeeeeeeenas 185
TEGLCharWidth FuUNCELIom . .t v ittt ittt ettt ettt ettt et eeeeeenens 185
TEGLEreeMem ProCeAUTL . @ v i i it i ittt e teeeeeeeeeeeeeeeneeeeenas 198
TEGLGEtMEmM PrOCEAUL . v it it ittt ettt e et eeeeeeeeeeeeeeeeeeeenas 197
TEGLKeyPressed FUNCLion. . v ittt ittt ittt teeeeeeeeeeeeeeeeenns 124
TEGLMaxAvall FUNCL IO . et it ittt ittt ettt e ettt eeeeeeaeeneas 219
TEGLReadkey FUNCLI0N . .t vt ittt ittt ittt ettt eeteeseeseeeeanas 123
TEGLSUPEIrVIiSOr PrOCEAUTL . @it vt it eeeeeeeeeeeoeeseeseeenenas 19
TE G LS U ETE VI SO e 4 v et e et e et e et eeoeeeeeeeenesoesoesesseeseeeas 23
TEGLTextWidth FUNCELIom . t vt ittt ittt et ettt e et ettt et teeneenens 184
TEGLWrtEtChar ProCedUr e . @i i ittt ittt ettt ettt eeeeeeteeeneeeeenas 186
B 3 e il = 187
B 3 e il = 257
B 4l il I) <= 24
TimerSwticCh ProOCedUTL . @i it ittt ittt ettt ettt eeeeeeneeneas 121
ToggleCheckMark Procedure. ... i i it ittt eeeeeeeeeeeeeenenens 93
ToggleEntryStatus Procedure. ... ittt ittt ittt eeeeeeeeeenens 93

ToggleOptionBar ProCedUre. .. v ittt et teeeeeeeeeeeseeeeenas 95

Programmer's Reference Guide - 266 - TEGL Windows Toolkit

UnFreezeMouse ProOCEAUTL . v vt vt it v e eeeesesnsesesesseneeens 115
UNLinKE S ProOCEAUTL B . @i vitinteeeeeeeeeeeeeeaeenssoesseeseennas 60
UnLockImage ProOCEdUTL . v v vttt vt vt e tesesesesssesesessenesess 71
UnUselmage ProOCEAULE . vt vttt vttt vt e tesesesssssesssesseneeess 72
UnderLineChar FUNCELIiOoN. . v ittt ittt ittt e ittt eeteeeeeeeennns 187
UseHardDisk pProCedUre. ..t ii ittt ittt eeeeeeeeeeeeeeseennns 217
Uselmage ProOCEAULE . v v vt vttt vttt e tesesesesesssesesessanesess 72
VDSKEreeMem PrOCEAULE .. v v vt vt et ot ot asesesesesesesesesasasess 214
VDSKGetMem funChLion. ..v .ttt it ittt teneeeeeeeeeeeeeeennens 213
VDSKReadHeapData pProCeduUr . . v v vt i ittt it et etetesesenasanans 215
VDSKWriteHeapData pProCeduUre. v it i it e et eneeeeeeeeeseennens 214
VDskCloseHeapFile pProCedUre. i v ittt e eneeeeeeeeeseeseeneens 215
VDskOpenHeapFile funCtion. ...ttt enteereeeeennens 211
VEMSOpenHeapFile funCtion.iii ittt enteeeeeeeeenens 212
AT 130
VGAGA0X480X16 ProOCEAULE . vt vttt ittt et et et esesesesesesasasans 129
VideoAULoDEet el v it it ittt e ettt it ettt e et eeseesenoeenneas 130
Y I LY 0 P 130
VideoPage FUNCLI0N . .t vttt ittt it ettt ieeeseeeeeeoeeseeseenneas 136
VirtualMemUsed FUNCLI0N . .t ittt it ittt ettt eeseeseeseenneas 219
VisualButtonPress FUNCLioN. ..ottt ittt intenteeeeeeeennens 169
XORBOX PrOCEAUTE . vt vttt ettt ettt e tesesesesssssessssssenesess 139
XORCOrNerBOX ProOCEAULE . v v vttt ittt ettt ot e sosssesessssenesess 139
Z1iPFrOomBOX PrOCEAUTL . @i v vt vt oot eeeeeeeeeneenesnesosseeneeas 159

Z1PTOBOX PrOCEAUL . i i it ittt sttt eeteeeeeeeenesoeesosseeneeas 159

